Ionic-Liquid-Assisted Synthesis of FeSe-MnSe Heterointerfaces with Abundant Se Vacancies Embedded in N,B Co-Doped Hollow Carbon Microspheres for Accelerating the Sulfur Reduction Reaction

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 41 vom: 10. Okt., Seite e2204147
1. Verfasser: Hu, Shunyou (VerfasserIn)
Weitere Verfasser: Wang, Tiansheng, Lu, Beibei, Wu, Dong, Wang, Hao, Liu, Xiangli, Zhang, Jiaheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article N,B co-doping Se vacancies heterointerfaces ionic liquids sulfur reduction reaction
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Currently, extensive research efforts are being devoted to suppressing the shuttle effect of polysulfides. The uncontrollable deposition of insulating Li2 S onto the surface of sulfur host materials dramatically inhibits the continuous reduction of polysulfides in lithium-sulfur (Li-S) batteries. Herein, N,B co-doped hollow carbon microspheres embedded with dense FeSe-MnSe heterostructures and abundant Se vacancies (FeSe-MnSe/NBC) are rationally designed and synthesized via a facile hydrothermal reaction using ionic liquids as dopants. The introduction of abundant heterostructures subtly guides Li2 S nucleation and deposition in 3D frameworks, thus avoiding the formation of the Li2 S passivation layer and allowing for continuous Li+ diffusion and subsequent nucleation of Li2 S. Owing to these beneficial features, Li-S batteries comprising an FeSe-MnSe/NBC electrode exhibit significantly improved performance, including a high initial capacity of 1334 mAh g-1 at 0.2 C and ultralong cycle stability with a low capacity fading rate of 0.029% cycle-1 over 1000 cycles at 1.0 C. Remarkably, the FeSe-MnSe/NBC pouch cell delivers a considerable areal capacity of 3.6 mAh cm-2 at 0.1 C. This study provides valuable insight into heterostructures and Se vacancies for developing practical Li-S batteries
Beschreibung:Date Revised 14.10.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202204147