SemiCurv : Semi-Supervised Curvilinear Structure Segmentation

Recent work on curvilinear structure segmentation has mostly focused on backbone network design and loss engineering. The challenge of collecting labelled data, an expensive and labor intensive process, has been overlooked. While labelled data is expensive to obtain, unlabelled data is often readily...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 09., Seite 5109-5120
1. Verfasser: Xu, Xun (VerfasserIn)
Weitere Verfasser: Nguyen, Manh Cuong, Yazici, Yasin, Lu, Kangkang, Min, Hlaing, Foo, Chuan-Sheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM344154238
003 DE-627
005 20231226022118.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3189823  |2 doi 
028 5 2 |a pubmed24n1147.xml 
035 |a (DE-627)NLM344154238 
035 |a (NLM)35895645 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Xun  |e verfasserin  |4 aut 
245 1 0 |a SemiCurv  |b Semi-Supervised Curvilinear Structure Segmentation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent work on curvilinear structure segmentation has mostly focused on backbone network design and loss engineering. The challenge of collecting labelled data, an expensive and labor intensive process, has been overlooked. While labelled data is expensive to obtain, unlabelled data is often readily available. In this work, we propose SemiCurv, a semi-supervised learning (SSL) framework for curvilinear structure segmentation that is able to utilize such unlabelled data to reduce the labelling burden. Our framework addresses two key challenges in formulating curvilinear segmentation in a semi-supervised manner. First, to fully exploit the power of consistency based SSL, we introduce a geometric transformation as strong data augmentation and then align segmentation predictions via a differentiable inverse transformation to enable the computation of pixel-wise consistency. Second, the traditional mean square error (MSE) on unlabelled data is prone to collapsed predictions and this issue exacerbates with severe class imbalance (significantly more background pixels). We propose a N-pair consistency loss to avoid trivial predictions on unlabelled data. We evaluate SemiCurv on six curvilinear segmentation datasets, and find that with no more than 5% of the labelled data, it achieves close to 95% of the performance relative to its fully supervised counterpart 
650 4 |a Journal Article 
700 1 |a Nguyen, Manh Cuong  |e verfasserin  |4 aut 
700 1 |a Yazici, Yasin  |e verfasserin  |4 aut 
700 1 |a Lu, Kangkang  |e verfasserin  |4 aut 
700 1 |a Min, Hlaing  |e verfasserin  |4 aut 
700 1 |a Foo, Chuan-Sheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 09., Seite 5109-5120  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:09  |g pages:5109-5120 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3189823  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 09  |h 5109-5120