DS-Net++ : Dynamic Weight Slicing for Efficient Inference in CNNs and Vision Transformers

Dynamic networks have shown their promising capability in reducing theoretical computation complexity by adapting their architectures to the input during inference. However, their practical runtime usually lags behind the theoretical acceleration due to inefficient sparsity. In this paper, we explor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 09. Apr., Seite 4430-4446
1. Verfasser: Li, Changlin (VerfasserIn)
Weitere Verfasser: Wang, Guangrun, Wang, Bing, Liang, Xiaodan, Li, Zhihui, Chang, Xiaojun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM344154211
003 DE-627
005 20231226022118.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3194044  |2 doi 
028 5 2 |a pubmed24n1147.xml 
035 |a (DE-627)NLM344154211 
035 |a (NLM)35895643 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Changlin  |e verfasserin  |4 aut 
245 1 0 |a DS-Net++  |b Dynamic Weight Slicing for Efficient Inference in CNNs and Vision Transformers 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dynamic networks have shown their promising capability in reducing theoretical computation complexity by adapting their architectures to the input during inference. However, their practical runtime usually lags behind the theoretical acceleration due to inefficient sparsity. In this paper, we explore a hardware-efficient dynamic inference regime, named dynamic weight slicing, that can generalized well on multiple dimensions in both CNNs and transformers (e.g. kernel size, embedding dimension, number of heads, etc.). Instead of adaptively selecting important weight elements in a sparse way, we pre-define dense weight slices with different importance level by nested residual learning. During inference, weights are progressively sliced beginning with the most important elements to less important ones to achieve different model capacity for inputs with diverse difficulty levels. Based on this conception, we present DS-CNN++ and DS-ViT++, by carefully designing the double headed dynamic gate and the overall network architecture. We further propose dynamic idle slicing to address the drastic reduction of embedding dimension in DS-ViT++. To ensure sub-network generality and routing fairness, we propose a disentangled two-stage optimization scheme. In Stage I, in-place bootstrapping (IB) and multi-view consistency (MvCo) are proposed to stablize and improve the training of DS-CNN++ and DS-ViT++ supernet, respectively. In Stage II, sandwich gate sparsification (SGS) is proposed to assist the gate training. Extensive experiments on 4 datasets and 3 different network architectures demonstrate our methods consistently outperform the state-of-the-art static and dynamic model compression methods by a large margin (up to 6.6%). Typically, we achieves 2-4× computation reduction and up to 61.5% real-world acceleration on MobileNet, ResNet-50 and Vision Transformer, with minimal accuracy drops on ImageNet. Code release: https://github.com/changlin31/DS-Net 
650 4 |a Journal Article 
700 1 |a Wang, Guangrun  |e verfasserin  |4 aut 
700 1 |a Wang, Bing  |e verfasserin  |4 aut 
700 1 |a Liang, Xiaodan  |e verfasserin  |4 aut 
700 1 |a Li, Zhihui  |e verfasserin  |4 aut 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 09. Apr., Seite 4430-4446  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:09  |g month:04  |g pages:4430-4446 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3194044  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 09  |c 04  |h 4430-4446