Tackling Disorder in γ-Ga2 O3
© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 37 vom: 01. Sept., Seite e2204217 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article electronic structure gallium oxide machine learning photoluminescence excitation spectroscopy semiconductors structural disorder ultrawide bandgap |
Zusammenfassung: | © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. Ga2 O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2 O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ-Ga2 O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure-electronic-structure relationship. Here, density functional theory is used in combination with a machine-learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ-phase. Theoretical results are compared with surface and bulk sensitive soft and hard X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ-Ga2 O3 . The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure |
---|---|
Beschreibung: | Date Revised 15.09.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202204217 |