Unlocking Interfacial Electron Transfer of Ruthenium Phosphides by Homologous Core-Shell Design toward Efficient Hydrogen Evolution and Oxidation

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 37 vom: 06. Sept., Seite e2204624
1. Verfasser: Du, Hongfang (VerfasserIn)
Weitere Verfasser: Du, Zhuzhu, Wang, Tingfeng, Li, Boxin, He, Song, Wang, Ke, Xie, Linghai, Ai, Wei, Huang, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article core-shell structures hydrogen evolution reaction hydrogen oxidation reaction phase transformation ruthenium phosphide
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Developing high-efficiency electrocatalysts for the hydrogen evolution and oxidation reactions (HER/HOR) in alkaline electrolytes is of critical importance for realizing renewable hydrogen technologies. Ruthenium phosphides (RuPx ) are promising candidates to substitute Pt-based electrodes; however, great challenges still remain in their electronic structure regulation for optimizing intermediate adsorption. Herein, it is reported that a homologous RuPRuP2 core-shell architecture constructed by a phosphatization-controlled phase-transformation strategy enables strong electron coupling for optimal intermediate adsorption by virtue of the emergent interfacial functionality. Density functional theory calculations show that the RuP core and RuP2 shell present efficient electron transfer, leading to a close to thermoneutral hydrogen adsorption Gibbs free energy of 0.04 eV. Impressively, the resulting material exhibits superior HER/HOR activities in alkaline media, which outperform the benchmark Pt/C and are among the best reported bifunctional hydrogen electrocatalysts. The present work not only provides an efficient and cost-effective bifunctional hydrogen electrocatalyst, but also offers a new synthetic protocol to rationally synthesize homologous core-shell nanostructures for widespread applications
Beschreibung:Date Revised 15.09.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202204624