Aerosol-Radiation Interactions in China in Winter : Competing Effects of Reduced Shortwave Radiation and Cloud-Snowfall-Albedo Feedbacks Under Rapidly Changing Emissions

© 2022. The Authors.

Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres : JGR. - 1998. - 127(2022), 9 vom: 16. Mai, Seite e2021JD035442
1. Verfasser: Moch, Jonathan M (VerfasserIn)
Weitere Verfasser: Mickley, Loretta J, Keller, Christoph A, Bian, Huisheng, Lundgren, Elizabeth W, Zhai, Shixian, Jacob, Daniel J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of geophysical research. Atmospheres : JGR
Schlagworte:Journal Article aerosols aerosol‐radiation interactions climate
LEADER 01000naa a22002652 4500
001 NLM343795949
003 DE-627
005 20231226021258.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1029/2021JD035442  |2 doi 
028 5 2 |a pubmed24n1145.xml 
035 |a (DE-627)NLM343795949 
035 |a (NLM)35859567 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Moch, Jonathan M  |e verfasserin  |4 aut 
245 1 0 |a Aerosol-Radiation Interactions in China in Winter  |b Competing Effects of Reduced Shortwave Radiation and Cloud-Snowfall-Albedo Feedbacks Under Rapidly Changing Emissions 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022. The Authors. 
520 |a Since 2013, Chinese policies have dramatically reduced emissions of particulates and their gas-phase precursors, but the implications of these reductions for aerosol-radiation interactions are unknown. Using a global, coupled chemistry-climate model, we examine how the radiative impacts of Chinese air pollution in the winter months of 2012 and 2013 affect local meteorology and how these changes may, in turn, influence surface concentrations of PM2.5, particulate matter with diameter <2.5 μm. We then investigate how decreasing emissions through 2016 and 2017 alter this impact. We find that absorbing aerosols aloft in winter 2012 and 2013 heat the middle- and lower troposphere by ∼0.5-1 K, reducing cloud liquid water, snowfall, and snow cover. The subsequent decline in surface albedo appears to counteract the ∼15-20 W m-2 decrease in shortwave radiation reaching the surface due to attenuation by aerosols overhead. The net result of this novel cloud-snowfall-albedo feedback in winters 2012-2013 is a slight increase in surface temperature of ∼0.5-1 K in some regions and little change elsewhere. The aerosol heating aloft, however, stabilizes the atmosphere and decreases the seasonal mean planetary boundary layer (PBL) height by ∼50 m. In winter 2016 and 2017, the ∼20% decrease in mean PM2.5 weakens the cloud-snowfall-albedo feedback, though it is still evident in western China, where the feedback again warms the surface by ∼0.5-1 K. Regardless of emissions, we find that aerosol-radiation interactions enhance mean surface PM2.5 pollution by 10%-20% across much of China during all four winters examined, mainly though suppression of PBL heights 
650 4 |a Journal Article 
650 4 |a aerosols 
650 4 |a aerosol‐radiation interactions 
650 4 |a climate 
700 1 |a Mickley, Loretta J  |e verfasserin  |4 aut 
700 1 |a Keller, Christoph A  |e verfasserin  |4 aut 
700 1 |a Bian, Huisheng  |e verfasserin  |4 aut 
700 1 |a Lundgren, Elizabeth W  |e verfasserin  |4 aut 
700 1 |a Zhai, Shixian  |e verfasserin  |4 aut 
700 1 |a Jacob, Daniel J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of geophysical research. Atmospheres : JGR  |d 1998  |g 127(2022), 9 vom: 16. Mai, Seite e2021JD035442  |w (DE-627)NLM098183494  |x 2169-897X  |7 nnns 
773 1 8 |g volume:127  |g year:2022  |g number:9  |g day:16  |g month:05  |g pages:e2021JD035442 
856 4 0 |u http://dx.doi.org/10.1029/2021JD035442  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 127  |j 2022  |e 9  |b 16  |c 05  |h e2021JD035442