Generative Text Convolutional Neural Network for Hierarchical Document Representation Learning

For document analysis, existing methods often resort to the document representation that either discards the word order information or projects each word into a low-dimensional dense embedding vector. However, confined by the data's sparsity and high-dimensionality, limited effort has been made...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 01. Apr., Seite 4586-4604
1. Verfasser: Wang, Chaojie (VerfasserIn)
Weitere Verfasser: Chen, Bo, Duan, Zhibin, Chen, Wenchao, Zhang, Hao, Zhou, Mingyuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM343732009
003 DE-627
005 20231226021132.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3192319  |2 doi 
028 5 2 |a pubmed24n1145.xml 
035 |a (DE-627)NLM343732009 
035 |a (NLM)35853051 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Chaojie  |e verfasserin  |4 aut 
245 1 0 |a Generative Text Convolutional Neural Network for Hierarchical Document Representation Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a For document analysis, existing methods often resort to the document representation that either discards the word order information or projects each word into a low-dimensional dense embedding vector. However, confined by the data's sparsity and high-dimensionality, limited effort has been made to explore the semantic structures underlying the document representation that formulates each document as a sequence of one-hot vectors, especially in the probabilistic modeling literature. To construct a probabilistic generative model for this type of document representation, we first develop convolutional Poisson factor analysis (CPFA) that not only utilizes the sparse property of data but also enables model parallelism. Through interleaving probabilistic Dirichlet-gamma pooling layers with learnable parameters, we extend the shallow CPFA into a generative text convolutional neural network (GTCNN), which captures richer semantic information with multiple probabilistic convolutional layers and can be coupled with existing deep topic models to alleviate their loss of word order. For efficient and scalable model inference, we not only develop both a parallel upward-downward Gibbs sampler and SG-MCMC based algorithm for training GTCNN, but also construct a hierarchical Weibull convolutional inference network for fast out-of-sample prediction. Experimental results on document representation learning tasks demonstrate the effectiveness of the proposed methods 
650 4 |a Journal Article 
700 1 |a Chen, Bo  |e verfasserin  |4 aut 
700 1 |a Duan, Zhibin  |e verfasserin  |4 aut 
700 1 |a Chen, Wenchao  |e verfasserin  |4 aut 
700 1 |a Zhang, Hao  |e verfasserin  |4 aut 
700 1 |a Zhou, Mingyuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 01. Apr., Seite 4586-4604  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:01  |g month:04  |g pages:4586-4604 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3192319  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 01  |c 04  |h 4586-4604