A Review of Generalized Zero-Shot Learning Methods

Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning. To address this challenging task, GZSL leverages semantic information of the seen (source) and unseen (target) classes to brid...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 18. Apr., Seite 4051-4070
1. Verfasser: Pourpanah, Farhad (VerfasserIn)
Weitere Verfasser: Abdar, Moloud, Luo, Yuxuan, Zhou, Xinlei, Wang, Ran, Lim, Chee Peng, Wang, Xi-Zhao, Wu, Q M Jonathan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM343698722
003 DE-627
005 20231226021045.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3191696  |2 doi 
028 5 2 |a pubmed24n1145.xml 
035 |a (DE-627)NLM343698722 
035 |a (NLM)35849673 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pourpanah, Farhad  |e verfasserin  |4 aut 
245 1 2 |a A Review of Generalized Zero-Shot Learning Methods 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 10.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning. To address this challenging task, GZSL leverages semantic information of the seen (source) and unseen (target) classes to bridge the gap between both seen and unseen classes. Since its introduction, many GZSL models have been formulated. In this review paper, we present a comprehensive review on GZSL. First, we provide an overview of GZSL including the problems and challenges. Then, we introduce a hierarchical categorization for the GZSL methods and discuss the representative methods in each category. In addition, we discuss the available benchmark data sets and applications of GZSL, along with a discussion on the research gaps and directions for future investigations 
650 4 |a Journal Article 
700 1 |a Abdar, Moloud  |e verfasserin  |4 aut 
700 1 |a Luo, Yuxuan  |e verfasserin  |4 aut 
700 1 |a Zhou, Xinlei  |e verfasserin  |4 aut 
700 1 |a Wang, Ran  |e verfasserin  |4 aut 
700 1 |a Lim, Chee Peng  |e verfasserin  |4 aut 
700 1 |a Wang, Xi-Zhao  |e verfasserin  |4 aut 
700 1 |a Wu, Q M Jonathan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 4 vom: 18. Apr., Seite 4051-4070  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:4  |g day:18  |g month:04  |g pages:4051-4070 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3191696  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 4  |b 18  |c 04  |h 4051-4070