Action Recognition With Motion Diversification and Dynamic Selection

Motion modeling is crucial in modern action recognition methods. As motion dynamics like moving tempos and action amplitude may vary a lot in different video clips, it poses great challenge on adaptively covering proper motion information. To address this issue, we introduce a Motion Diversification...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 4884-4896
Auteur principal: Zhuang, Peiqin (Auteur)
Autres auteurs: Guo, Yu, Yu, Zhipeng, Zhou, Luping, Bai, Lei, Liang, Ding, Wang, Zhiyong, Wang, Yali, Ouyang, Wanli
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM343594315
003 DE-627
005 20250303141633.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3189811  |2 doi 
028 5 2 |a pubmed25n1145.xml 
035 |a (DE-627)NLM343594315 
035 |a (NLM)35839182 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhuang, Peiqin  |e verfasserin  |4 aut 
245 1 0 |a Action Recognition With Motion Diversification and Dynamic Selection 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.07.2022 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Motion modeling is crucial in modern action recognition methods. As motion dynamics like moving tempos and action amplitude may vary a lot in different video clips, it poses great challenge on adaptively covering proper motion information. To address this issue, we introduce a Motion Diversification and Selection (MoDS) module to generate diversified spatio-temporal motion features and then select the suitable motion representation dynamically for categorizing the input video. To be specific, we first propose a spatio-temporal motion generation (StMG) module to construct a bank of diversified motion features with varying spatial neighborhood and time range. Then, a dynamic motion selection (DMS) module is leveraged to choose the most discriminative motion feature both spatially and temporally from the feature bank. As a result, our proposed method can make full use of the diversified spatio-temporal motion information, while maintaining computational efficiency at the inference stage. Extensive experiments on five widely-used benchmarks, demonstrate the effectiveness of the method and we achieve state-of-the-art performance on Something-Something V1 & V2 that are of large motion variation 
650 4 |a Journal Article 
700 1 |a Guo, Yu  |e verfasserin  |4 aut 
700 1 |a Yu, Zhipeng  |e verfasserin  |4 aut 
700 1 |a Zhou, Luping  |e verfasserin  |4 aut 
700 1 |a Bai, Lei  |e verfasserin  |4 aut 
700 1 |a Liang, Ding  |e verfasserin  |4 aut 
700 1 |a Wang, Zhiyong  |e verfasserin  |4 aut 
700 1 |a Wang, Yali  |e verfasserin  |4 aut 
700 1 |a Ouyang, Wanli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 4884-4896  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:4884-4896 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3189811  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 4884-4896