Future Research Directions in Perovskite Solar Cells : Exquisite Photon Management and Thermodynamic Phase Stability

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 43 vom: 15. Okt., Seite e2204807
1. Verfasser: Kim, Hui-Seon (VerfasserIn)
Weitere Verfasser: Park, Nam-Gyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review Gibbs free energy external luminescence perovskites phase stabilities solar cells theoretical limits
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
As power conversion efficiency (PCE) of perovskite solar cells (PSCs) has rapidly increased up to 25.7% in 2022, a curiosity about the achievable limit of the PCE has prevailed and demands understanding about the underlying fundamentals to step forward. Meanwhile, outstanding long-term stability of PSCs over 1000 h has been reported at operating conditions or under damp heat test with 85 °C/85% relative humidity. Herein comes the question as to whether the phase stability issue of perovskite crystal is completely resolved in the most recent state-of-the-art perovskite film or if it deceives everyone into believing so by significantly slowing the kinetics. On the one hand, the fundamental origins of a discrepancy between reported values and the theoretical limit are thoroughly examined, where the importance of light management is greatly emphasized with the introduction of external luminescence as a key parameter to narrow the gap. On the other hand, the phase stability of a perovskite film is understood from thermodynamic point of view to address viable approaches to lower the Gibbs free energy, distinguishing the kinetically trapped condition from the thermodynamically stable phase
Beschreibung:Date Revised 26.10.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202204807