Covariance Estimation From Compressive Data Partitions Using a Projected Gradient-Based Algorithm

Compressive covariance estimation has arisen as a class of techniques whose aim is to obtain second-order statistics of stochastic processes from compressive measurements. Recently, these methods have been used in various image processing and communications applications, including denoising, spectru...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 13., Seite 4817-4827
1. Verfasser: Monsalve, Jonathan (VerfasserIn)
Weitere Verfasser: Ramirez, Juan, Esnaola, Inaki, Arguello, Henry
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM343507579
003 DE-627
005 20231226020614.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3187285  |2 doi 
028 5 2 |a pubmed24n1144.xml 
035 |a (DE-627)NLM343507579 
035 |a (NLM)35830408 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Monsalve, Jonathan  |e verfasserin  |4 aut 
245 1 0 |a Covariance Estimation From Compressive Data Partitions Using a Projected Gradient-Based Algorithm 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Compressive covariance estimation has arisen as a class of techniques whose aim is to obtain second-order statistics of stochastic processes from compressive measurements. Recently, these methods have been used in various image processing and communications applications, including denoising, spectrum sensing, and compression. Notice that estimating the covariance matrix from compressive samples leads to ill-posed minimizations with severe performance loss at high compression rates. In this regard, a regularization term is typically aggregated to the cost function to consider prior information about a particular property of the covariance matrix. Hence, this paper proposes an algorithm based on the projected gradient method to recover low-rank or Toeplitz approximations of the covariance matrix from compressive measurements. The proposed algorithm divides the compressive measurements into data subsets projected onto different subspaces and accurately estimates the covariance matrix by solving a single optimization problem assuming that each data subset contains an approximation of the signal statistics. Furthermore, gradient filtering is included at every iteration of the proposed algorithm to minimize the estimation error. The error induced by the proposed splitting approach is analytically derived along with the convergence guarantees of the proposed method. The proposed algorithm estimates the covariance matrix of hyperspectral images from synthetic and real compressive samples. Extensive simulations show that the proposed algorithm can effectively recover the covariance matrix of hyperspectral images from compressive measurements with high compression ratios ( 8-15% approx) in noisy scenarios. Moreover, simulations and theoretical results show that the filtering step reduces the recovery error up to twice the number of eigenvectors. Finally, an optical implementation is proposed, and real measurements are used to validate the theoretical findings 
650 4 |a Journal Article 
700 1 |a Ramirez, Juan  |e verfasserin  |4 aut 
700 1 |a Esnaola, Inaki  |e verfasserin  |4 aut 
700 1 |a Arguello, Henry  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 13., Seite 4817-4827  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:13  |g pages:4817-4827 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3187285  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 13  |h 4817-4827