Pseudo-Pair Based Self-Similarity Learning for Unsupervised Person Re-Identification

Person re-identification (re-ID) is of great importance to video surveillance systems by estimating the similarity between a pair of cross-camera person shorts. Current methods for estimating such similarity require a large number of labeled samples for supervised training. In this paper, we present...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 13., Seite 4803-4816
1. Verfasser: Wu, Lin (VerfasserIn)
Weitere Verfasser: Liu, Deyin, Zhang, Wenying, Chen, Dapeng, Ge, Zongyuan, Boussaid, Farid, Bennamoun, Mohammed, Shen, Jialie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM343507544
003 DE-627
005 20231226020614.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3186746  |2 doi 
028 5 2 |a pubmed24n1144.xml 
035 |a (DE-627)NLM343507544 
035 |a (NLM)35830405 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Lin  |e verfasserin  |4 aut 
245 1 0 |a Pseudo-Pair Based Self-Similarity Learning for Unsupervised Person Re-Identification 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.07.2022 
500 |a Date Revised 19.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Person re-identification (re-ID) is of great importance to video surveillance systems by estimating the similarity between a pair of cross-camera person shorts. Current methods for estimating such similarity require a large number of labeled samples for supervised training. In this paper, we present a pseudo-pair based self-similarity learning approach for unsupervised person re-ID without human annotations. Unlike conventional unsupervised re-ID methods that use pseudo labels based on global clustering, we construct patch surrogate classes as initial supervision, and propose to assign pseudo labels to images through the pairwise gradient-guided similarity separation. This can cluster images in pseudo pairs, and the pseudos can be updated during training. Based on pseudo pairs, we propose to improve the generalization of similarity function via a novel self-similarity learning:it learns local discriminative features from individual images via intra-similarity, and discovers the patch correspondence across images via inter-similarity. The intra-similarity learning is based on channel attention to detect diverse local features from an image. The inter-similarity learning employs a deformable convolution with a non-local block to align patches for cross-image similarity. Experimental results on several re-ID benchmark datasets demonstrate the superiority of the proposed method over the state-of-the-arts 
650 4 |a Journal Article 
700 1 |a Liu, Deyin  |e verfasserin  |4 aut 
700 1 |a Zhang, Wenying  |e verfasserin  |4 aut 
700 1 |a Chen, Dapeng  |e verfasserin  |4 aut 
700 1 |a Ge, Zongyuan  |e verfasserin  |4 aut 
700 1 |a Boussaid, Farid  |e verfasserin  |4 aut 
700 1 |a Bennamoun, Mohammed  |e verfasserin  |4 aut 
700 1 |a Shen, Jialie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 13., Seite 4803-4816  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:13  |g pages:4803-4816 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3186746  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 13  |h 4803-4816