Visualizing Dynamic Mechanical Actions with High Sensitivity and High Resolution by Near-Distance Mechanoluminescence Imaging
© 2022 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 36 vom: 14. Sept., Seite e2202864 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article intelligent sensors mechanoluminescence near-distance imaging sensitivity improvement stress visualization |
Zusammenfassung: | © 2022 Wiley-VCH GmbH. Proportionally converting the applied mechanical energy into photons by individual mechanoluminescent (ML) micrometer-sized particles opens a new way to develop intelligent electronic skins as it promises high-resolution stress distribution visualization and fast response. However, a big challenge for ML sensing technology is its low sensitivity in detecting stress. In this work, a novel stress distribution sensor with the detection sensitivity enhanced by two orders of magnitude is developed by combining a proposed near-distance ML imaging scheme with an improved mechano-to-photon convertor. The enhanced sensitivity is the main contributor to the realization of a maximum photon harvesting rate of ≈80% in the near-distance ML imaging scheme. The developed near-distance ML sensor shows a high sensitivity with a detection limit down to ≈kPa level, high spatial resolution of 254 dpi, and fast response with an interval of 3.3 ms, which allows for high-resolution and real-time visualization of complex mechanical actions such as irregular solid contacts or fluid impacts, and thus enables use in intelligent electronic skin, structural health monitoring, and human-computer interaction |
---|---|
Beschreibung: | Date Completed 09.09.2022 Date Revised 09.09.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202202864 |