High-Frequency Normalizing Flow for Image Rescaling

It is desirable to develop efficient image rescaling methods to transmit digital images with different resolutions between devices and assure visual quality. In image downscaling, the inevitable loss of high-frequency information makes the reverse upscaling highly ill-posed. Recent approaches focus...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 6223-6233
Auteur principal: Zhu, Yiming (Auteur)
Autres auteurs: Wang, Cairong, Dong, Chenyu, Zhang, Ke, Gao, Hongyang, Yuan, Chun
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:It is desirable to develop efficient image rescaling methods to transmit digital images with different resolutions between devices and assure visual quality. In image downscaling, the inevitable loss of high-frequency information makes the reverse upscaling highly ill-posed. Recent approaches focus on joint learning of image downscaling and upscaling (e.g., rescaling). However, existing methods still fail to recover satisfactory high-frequency signals when upscaling. To solve it, we propose high-frequency flow (HfFlow), which learns the distribution of high-frequency signals during rescaling. HfFlow is an overall invertible framework with a conditional flow on the high-frequency space to compensate for the information lost during downscaling. To facilitate finding the optimal upscaling solution, we introduce a reference low-resolution (LR) manifold and propose a cross-entropy Gaussian loss (CGloss) to force the downscaled manifold closer to the reference LR manifold and simultaneously fulfill recovering missing details. HfFlow can be generalized to other scale transformation tasks such as image colorization with its excellent rescaling capacity. Qualitative and quantitative experimental evaluations demonstrate that HfFlow restores rich high-frequency details and outperforms state-of-the-art rescaling methods in PSNR, SSIM, and perceptual quality metrics
Description:Date Revised 15.11.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3188158