MetaAge : Meta-Learning Personalized Age Estimators

Different people age in different ways. Learning a personalized age estimator for each person is a promising direction for age estimation given that it better models the personalization of aging processes. However, most existing personalized methods suffer from the lack of large-scale datasets due t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 4761-4775
1. Verfasser: Li, Wanhua (VerfasserIn)
Weitere Verfasser: Lu, Jiwen, Wuerkaixi, Abudukelimu, Feng, Jianjiang, Zhou, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM343369966
003 DE-627
005 20250303135353.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3188061  |2 doi 
028 5 2 |a pubmed25n1144.xml 
035 |a (DE-627)NLM343369966 
035 |a (NLM)35816526 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Wanhua  |e verfasserin  |4 aut 
245 1 0 |a MetaAge  |b Meta-Learning Personalized Age Estimators 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2022 
500 |a Date Revised 18.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Different people age in different ways. Learning a personalized age estimator for each person is a promising direction for age estimation given that it better models the personalization of aging processes. However, most existing personalized methods suffer from the lack of large-scale datasets due to the high-level requirements: identity labels and enough samples for each person to form a long-term aging pattern. In this paper, we aim to learn personalized age estimators without the above requirements and propose a meta-learning method named MetaAge for age estimation. Unlike most existing personalized methods that learn the parameters of a personalized estimator for each person in the training set, our method learns the mapping from identity information to age estimator parameters. Specifically, we introduce a personalized estimator meta-learner, which takes identity features as the input and outputs the parameters of customized estimators. In this way, our method learns the meta knowledge without the above requirements and seamlessly transfers the learned meta knowledge to the test set, which enables us to leverage the existing large-scale age datasets without any additional annotations. Extensive experimental results on three benchmark datasets including MORPH II, ChaLearn LAP 2015 and ChaLearn LAP 2016 databases demonstrate that our MetaAge significantly boosts the performance of existing personalized methods and outperforms the state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Lu, Jiwen  |e verfasserin  |4 aut 
700 1 |a Wuerkaixi, Abudukelimu  |e verfasserin  |4 aut 
700 1 |a Feng, Jianjiang  |e verfasserin  |4 aut 
700 1 |a Zhou, Jie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 4761-4775  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:4761-4775 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3188061  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 4761-4775