|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM343365804 |
003 |
DE-627 |
005 |
20231226020258.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202204779
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1144.xml
|
035 |
|
|
|a (DE-627)NLM343365804
|
035 |
|
|
|a (NLM)35816107
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gao, Zhao-Yan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Experimental Realization of Atomic Monolayer Si9 C15
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.09.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Monolayer Six Cy constitutes an important family of 2D materials that is predicted to feature a honeycomb structure and appreciable bandgaps. However, due to its binary chemical nature and the lack of bulk polymorphs with a layered structure, the fabrication of such materials has so far been challenging. Here, the synthesis of atomic monolayer Si9 C15 on Ru (0001) and Rh(111) substrates is reported. A combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and density functional theory (DFT) calculations is used to infer that the 2D lattice of Si9 C15 is a buckled honeycomb structure. Monolayer Si9 C15 shows semiconducting behavior with a bandgap of ≈1.9 eV. Remarkably, the Si9 C15 lattice remains intact after exposure to ambient conditions, indicating good air stability. The present work expands the 2D-materials library and provides a promising platform for future studies in nanoelectronics and nanophotonics
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D materials
|
650 |
|
4 |
|a Si9C15 monolayers
|
650 |
|
4 |
|a SixCy
|
650 |
|
4 |
|a air-stable materials
|
650 |
|
4 |
|a honeycomb structures
|
700 |
1 |
|
|a Xu, Wenpeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Yixuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guzman, Roger
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xueyan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Qi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Zhili
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yu-Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Xiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huan, Qing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Geng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Lizhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Wu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Hong-Jun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 35 vom: 20. Sept., Seite e2204779
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:35
|g day:20
|g month:09
|g pages:e2204779
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202204779
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 35
|b 20
|c 09
|h e2204779
|