What changed in the cyber-security after COVID-19?

© 2022 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Computers & security. - 1998. - 120(2022) vom: 29. Sept., Seite 102821
1. Verfasser: Kumar, Rajesh (VerfasserIn)
Weitere Verfasser: Sharma, Siddharth, Vachhani, Chirag, Yadav, Nitish
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Computers & security
Schlagworte:Journal Article COVID-19 pandemic Cyber-security trends Latent Dirichlet Allocation Topic modeling Trend analysis Unsupervised machine learning
LEADER 01000caa a22002652 4500
001 NLM343344653
003 DE-627
005 20240902231959.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.cose.2022.102821  |2 doi 
028 5 2 |a pubmed24n1520.xml 
035 |a (DE-627)NLM343344653 
035 |a (NLM)35813991 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kumar, Rajesh  |e verfasserin  |4 aut 
245 1 0 |a What changed in the cyber-security after COVID-19? 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a This paper examines the transition in the cyber-security discipline induced by the ongoing COVID-19 pandemic. Using the classical information retrieval techniques, a more than twenty thousand documents are analyzed for the cyber content. In particular, we build the topic models using the Latent Dirichlet Allocation (LDA) unsupervised machine learning algorithm. The literature corpus is build through a uniform keyword search process made on the scholarly and the non-scholarly platforms filtered through the years 2010-2021. To qualitatively know the impact of COVID-19 pandemic on cyber-security, and perform a trend analysis of key themes, we organize the entire corpus into various (combination of) categories based on time period and whether the literature has undergone peer review process. Based on the weighted distribution of keywords in the aggregated corpus, we identify the key themes. While in the pre-COVID-19 period, the topics of cyber-threats to technology, privacy policy, blockchain remain popular, in the post-COVID-19 period, focus has shifted to challenges directly or indirectly brought by the pandemic. In particular, we observe post-COVID-19 cyber-security themes of privacy in healthcare, cyber insurance, cyber risks in supply chain gaining recognition. Few cyber-topics such as of malware, control system security remain important in perpetuity. We believe our work represents the evolving nature of the cyber-security discipline and reaffirms the need to tailor appropriate interventions by noting the key trends 
650 4 |a Journal Article 
650 4 |a COVID-19 pandemic 
650 4 |a Cyber-security trends 
650 4 |a Latent Dirichlet Allocation 
650 4 |a Topic modeling 
650 4 |a Trend analysis 
650 4 |a Unsupervised machine learning 
700 1 |a Sharma, Siddharth  |e verfasserin  |4 aut 
700 1 |a Vachhani, Chirag  |e verfasserin  |4 aut 
700 1 |a Yadav, Nitish  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Computers & security  |d 1998  |g 120(2022) vom: 29. Sept., Seite 102821  |w (DE-627)NLM098169963  |x 0167-4048  |7 nnns 
773 1 8 |g volume:120  |g year:2022  |g day:29  |g month:09  |g pages:102821 
856 4 0 |u http://dx.doi.org/10.1016/j.cose.2022.102821  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 120  |j 2022  |b 29  |c 09  |h 102821