Lab-scale data and microbial community structure suggest shortcut nitrogen removal as the predominant nitrogen removal mechanism in post-aerobic digestion (PAD)

© 2022 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 94(2022), 7 vom: 09. Juli, Seite e10762
1. Verfasser: Sabba, Fabrizio (VerfasserIn)
Weitere Verfasser: McNamara, Patrick, Redmond, Eric, Ruff, Caitlin, Young, Mike, Downing, Leon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article AOB NOB aeration ammonia removal shortcut nitrogen removal sidestream treatment volatile solids destruction Nitrites RNA, Ribosomal, 16S mehr... Carbon 7440-44-0 Ammonia 7664-41-7 Nitrogen N762921K75 Nitrogen Dioxide S7G510RUBH
LEADER 01000naa a22002652 4500
001 NLM343295253
003 DE-627
005 20231226020116.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.10762  |2 doi 
028 5 2 |a pubmed24n1144.xml 
035 |a (DE-627)NLM343295253 
035 |a (NLM)35809034 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sabba, Fabrizio  |e verfasserin  |4 aut 
245 1 0 |a Lab-scale data and microbial community structure suggest shortcut nitrogen removal as the predominant nitrogen removal mechanism in post-aerobic digestion (PAD) 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.07.2022 
500 |a Date Revised 12.07.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2022 Water Environment Federation. 
520 |a Implementing an aerobic digestion step after anaerobic digestion, referred to as "post aerobic digestion" (PAD), can remove ammonia without the need for an external carbon source and destroy volatile solids. While this process has been documented at the lab-scale and full-scale, the mechanism for N removal and the corresponding microbial community that carries out this process have not been established. This research gap is important to fill because the nitrogen removal pathway has implications on aeration requirements and carbon demand, that is, short-cut N-removal requires less oxygen and carbon than simultaneous nitrification-denitrification. The aims of this research were to (i) determine if nitrite (NO2 - ) or nitrate (NO3 - ) dominates following ammonia removal and (ii) characterize the microbial community from PAD reactors. Here, lab-scale PAD reactors were seeded with biomass from two different full-scale PAD reactors. The lab-scale reactors were fed with biomass from full-scale reactors and operated in batch mode to quantify nitrogen species concentrations (ammonia, NH4 + , NO2 - , and NO3 - ) over time. Experimental results revealed that NO2 - production rates were several orders of magnitude greater than NO3 - production rates. Indeed, nitrite accumulation rate (NAR) was greater than 90% at most temperatures, confirming that shortcut nitrogen removal was the dominant NH4 + removal mechanism in PAD. Microbial community analysis via 16S rRNA sequencing indicated that ammonia oxidizing bacteria (AOB) were much more abundant than nitrite oxidizing bacteria (NOB). Overall, this study suggests that aeration requirements for post-aerobic digestion should be based on NO2 - shunt and not complete simultaneous nitrification denitrification. PRACTITIONER POINTS: AOB are a key feature of PAD microbial communities NOB are present, but in much lower abundance than AOB High nitrite accumulation ratio suggests shortcut nitrite as the main mechanism for nitrogen removal Nitritation in PAD reactors is sustained at temperatures as high as 40°C No ammonia oxidation occurred at 50°C implying different mechanisms of nitrogen removal including ammonia stripping 
650 4 |a Journal Article 
650 4 |a AOB 
650 4 |a NOB 
650 4 |a aeration 
650 4 |a ammonia removal 
650 4 |a shortcut nitrogen removal 
650 4 |a sidestream treatment 
650 4 |a volatile solids destruction 
650 7 |a Nitrites  |2 NLM 
650 7 |a RNA, Ribosomal, 16S  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Ammonia  |2 NLM 
650 7 |a 7664-41-7  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
650 7 |a Nitrogen Dioxide  |2 NLM 
650 7 |a S7G510RUBH  |2 NLM 
700 1 |a McNamara, Patrick  |e verfasserin  |4 aut 
700 1 |a Redmond, Eric  |e verfasserin  |4 aut 
700 1 |a Ruff, Caitlin  |e verfasserin  |4 aut 
700 1 |a Young, Mike  |e verfasserin  |4 aut 
700 1 |a Downing, Leon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 94(2022), 7 vom: 09. Juli, Seite e10762  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:94  |g year:2022  |g number:7  |g day:09  |g month:07  |g pages:e10762 
856 4 0 |u http://dx.doi.org/10.1002/wer.10762  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 94  |j 2022  |e 7  |b 09  |c 07  |h e10762