Partially Supervised Compatibility Modeling

Fashion Compatibility Modeling (FCM), which aims to automatically evaluate whether a given set of fashion items makes a compatible outfit, has attracted increasing research attention. Recent studies have demonstrated the benefits of conducting the item representation disentanglement towards FCM. Alt...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 4733-4745
1. Verfasser: Guan, Weili (VerfasserIn)
Weitere Verfasser: Wen, Haokun, Song, Xuemeng, Wang, Chun, Yeh, Chung-Hsing, Chang, Xiaojun, Nie, Liqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM343139200
003 DE-627
005 20231226015732.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3187290  |2 doi 
028 5 2 |a pubmed24n1143.xml 
035 |a (DE-627)NLM343139200 
035 |a (NLM)35793293 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guan, Weili  |e verfasserin  |4 aut 
245 1 0 |a Partially Supervised Compatibility Modeling 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fashion Compatibility Modeling (FCM), which aims to automatically evaluate whether a given set of fashion items makes a compatible outfit, has attracted increasing research attention. Recent studies have demonstrated the benefits of conducting the item representation disentanglement towards FCM. Although these efforts have achieved prominent progress, they still perform unsatisfactorily, as they mainly investigate the visual content of fashion items, while overlooking the semantic attributes of items (e.g., color and pattern), which could largely boost the model performance and interpretability. To address this issue, we propose to comprehensively explore the visual content and attributes of fashion items towards FCM. This problem is non-trivial considering the following challenges: a) how to utilize the irregular attribute labels of items to partially supervise the attribute-level representation learning of fashion items; b) how to ensure the intact disentanglement of attribute-level representations; and c) how to effectively sew the multiple granulairites (i.e, coarse-grained item-level and fine-grained attribute-level) information to enable performance improvement and interpretability. To address these challenges, in this work, we present a partially supervised outfit compatibility modeling scheme (PS-OCM). In particular, we first devise a partially supervised attribute-level embedding learning component to disentangle the fine-grained attribute embeddings from the entire visual feature of each item. We then introduce a disentangled completeness regularizer to prevent the information loss during disentanglement. Thereafter, we design a hierarchical graph convolutional network, which seamlessly integrates the attribute- and item-level compatibility modeling, and enables the explainable compatibility reasoning. Extensive experiments on the real-world dataset demonstrate that our PS-OCM significantly outperforms the state-of-the-art baselines. We have released our source codes and well-trained models to benefit other researchers (https://site2750.wixsite.com/ps-ocm) 
650 4 |a Journal Article 
700 1 |a Wen, Haokun  |e verfasserin  |4 aut 
700 1 |a Song, Xuemeng  |e verfasserin  |4 aut 
700 1 |a Wang, Chun  |e verfasserin  |4 aut 
700 1 |a Yeh, Chung-Hsing  |e verfasserin  |4 aut 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Nie, Liqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 4733-4745  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:4733-4745 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3187290  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 4733-4745