Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS2 through Machine-Learning Models

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 34 vom: 21. Aug., Seite e2202911
1. Verfasser: Lu, Ang-Yu (VerfasserIn)
Weitere Verfasser: Martins, Luiz Gustavo Pimenta, Shen, Pin-Chun, Chen, Zhantao, Park, Ji-Hoon, Xue, Mantian, Han, Jinchi, Mao, Nannan, Chiu, Ming-Hui, Palacios, Tomás, Tung, Vincent, Kong, Jing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D materials Raman spectroscopy machine learning molybdenum disulfide photoluminescence
LEADER 01000naa a22002652 4500
001 NLM34310685X
003 DE-627
005 20231226015647.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202202911  |2 doi 
028 5 2 |a pubmed24n1143.xml 
035 |a (DE-627)NLM34310685X 
035 |a (NLM)35790036 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Ang-Yu  |e verfasserin  |4 aut 
245 1 0 |a Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS2 through Machine-Learning Models 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a 2D transition metal dichalcogenides (TMDCs) with intense and tunable photoluminescence (PL) have opened up new opportunities for optoelectronic and photonic applications such as light-emitting diodes, photodetectors, and single-photon emitters. Among the standard characterization tools for 2D materials, Raman spectroscopy stands out as a fast and non-destructive technique capable of probing material's crystallinity and perturbations such as doping and strain. However, a comprehensive understanding of the correlation between photoluminescence and Raman spectra in monolayer MoS2 remains elusive due to its highly nonlinear nature. Here, the connections between PL signatures and Raman modes are systematically explored, providing comprehensive insights into the physical mechanisms correlating PL and Raman features. This study's analysis further disentangles the strain and doping contributions from the Raman spectra through machine-learning models. First, a dense convolutional network (DenseNet) to predict PL maps by spatial Raman maps is deployed. Moreover, a gradient boosted trees model (XGBoost) with Shapley additive explanation (SHAP) to bridge the impact of individual Raman features in PL features is applied. Last, a support vector machine (SVM) to project PL features on Raman frequencies is adopted. This work may serve as a methodology for applying machine learning to characterizations of 2D materials 
650 4 |a Journal Article 
650 4 |a 2D materials 
650 4 |a Raman spectroscopy 
650 4 |a machine learning 
650 4 |a molybdenum disulfide 
650 4 |a photoluminescence 
700 1 |a Martins, Luiz Gustavo Pimenta  |e verfasserin  |4 aut 
700 1 |a Shen, Pin-Chun  |e verfasserin  |4 aut 
700 1 |a Chen, Zhantao  |e verfasserin  |4 aut 
700 1 |a Park, Ji-Hoon  |e verfasserin  |4 aut 
700 1 |a Xue, Mantian  |e verfasserin  |4 aut 
700 1 |a Han, Jinchi  |e verfasserin  |4 aut 
700 1 |a Mao, Nannan  |e verfasserin  |4 aut 
700 1 |a Chiu, Ming-Hui  |e verfasserin  |4 aut 
700 1 |a Palacios, Tomás  |e verfasserin  |4 aut 
700 1 |a Tung, Vincent  |e verfasserin  |4 aut 
700 1 |a Kong, Jing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 34 vom: 21. Aug., Seite e2202911  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:34  |g day:21  |g month:08  |g pages:e2202911 
856 4 0 |u http://dx.doi.org/10.1002/adma.202202911  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 34  |b 21  |c 08  |h e2202911