Anode Catalysts in Anion-Exchange-Membrane Electrolysis without Supporting Electrolyte : Conductivity, Dynamics, and Ionomer Degradation

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 35 vom: 01. Sept., Seite e2203033
1. Verfasser: Krivina, Raina A (VerfasserIn)
Weitere Verfasser: Lindquist, Grace A, Beaudoin, Sarah R, Stovall, Timothy Nathan, Thompson, Willow L, Twight, Liam P, Marsh, Douglas, Grzyb, Joseph, Fabrizio, Kevin, Hutchison, James E, Boettcher, Shannon W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article alkaline water electrolysis anion-exchange membranes membrane electrolysis non-platinum-group-metal catalysts oxygen evolution catalysis
LEADER 01000naa a22002652 4500
001 NLM343106825
003 DE-627
005 20231226015647.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202203033  |2 doi 
028 5 2 |a pubmed24n1143.xml 
035 |a (DE-627)NLM343106825 
035 |a (NLM)35790033 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Krivina, Raina A  |e verfasserin  |4 aut 
245 1 0 |a Anode Catalysts in Anion-Exchange-Membrane Electrolysis without Supporting Electrolyte  |b Conductivity, Dynamics, and Ionomer Degradation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Anion-exchange-membrane water electrolyzers (AEMWEs) in principle operate without soluble electrolyte using earth-abundant catalysts and cell materials and thus lower the cost of green H2 . Current systems lack competitive performance and the durability needed for commercialization. One critical issue is a poor understanding of catalyst-specific degradation processes in the electrolyzer. While non-platinum-group-metal (non-PGM) oxygen-evolution catalysts show excellent performance and durability in strongly alkaline electrolyte, this has not transferred directly to pure-water AEMWEs. Here, AEMWEs with five non-PGM anode catalysts are built and the catalysts' structural stability and interactions with the alkaline ionomer are characterized during electrolyzer operation and post-mortem. The results show catalyst electrical conductivity is one key to obtaining high-performing systems and that many non-PGM catalysts restructure during operation. Dynamic Fe sites correlate with enhanced degradation rates, as does the addition of soluble Fe impurities. In contrast, electronically conductive Co3 O4 nanoparticles (without Fe in the crystal structure) yield AEMWEs from simple, standard preparation methods, with performance and stability comparable to IrO2 . These results reveal the fundamental dynamic catalytic processes resulting in AEMWE device failure under relevant conditions, demonstrate a viable non-PGM catalyst for AEMWE operation, and illustrate underlying design rules for engineering anode catalyst/ionomer layers with higher performance and durability 
650 4 |a Journal Article 
650 4 |a alkaline water electrolysis 
650 4 |a anion-exchange membranes 
650 4 |a membrane electrolysis 
650 4 |a non-platinum-group-metal catalysts 
650 4 |a oxygen evolution catalysis 
700 1 |a Lindquist, Grace A  |e verfasserin  |4 aut 
700 1 |a Beaudoin, Sarah R  |e verfasserin  |4 aut 
700 1 |a Stovall, Timothy Nathan  |e verfasserin  |4 aut 
700 1 |a Thompson, Willow L  |e verfasserin  |4 aut 
700 1 |a Twight, Liam P  |e verfasserin  |4 aut 
700 1 |a Marsh, Douglas  |e verfasserin  |4 aut 
700 1 |a Grzyb, Joseph  |e verfasserin  |4 aut 
700 1 |a Fabrizio, Kevin  |e verfasserin  |4 aut 
700 1 |a Hutchison, James E  |e verfasserin  |4 aut 
700 1 |a Boettcher, Shannon W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 35 vom: 01. Sept., Seite e2203033  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:35  |g day:01  |g month:09  |g pages:e2203033 
856 4 0 |u http://dx.doi.org/10.1002/adma.202203033  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 35  |b 01  |c 09  |h e2203033