MSA-Net : Establishing Reliable Correspondences by Multiscale Attention Network

In this paper, we propose a novel multi-scale attention based network (called MSA-Net) for feature matching problems. Current deep networks based feature matching methods suffer from limited effectiveness and robustness when applied to different scenarios, due to random distributions of outliers and...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 4598-4608
Auteur principal: Zheng, Linxin (Auteur)
Autres auteurs: Xiao, Guobao, Shi, Ziwei, Wang, Shiping, Ma, Jiayi
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM342975862
003 DE-627
005 20250303130236.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3186535  |2 doi 
028 5 2 |a pubmed25n1143.xml 
035 |a (DE-627)NLM342975862 
035 |a (NLM)35776808 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Linxin  |e verfasserin  |4 aut 
245 1 0 |a MSA-Net  |b Establishing Reliable Correspondences by Multiscale Attention Network 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a novel multi-scale attention based network (called MSA-Net) for feature matching problems. Current deep networks based feature matching methods suffer from limited effectiveness and robustness when applied to different scenarios, due to random distributions of outliers and insufficient information learning. To address this issue, we propose a multi-scale attention block to enhance the robustness to outliers, for improving the representational ability of the feature map. In addition, we also design a novel context channel refine block and a context spatial refine block to mine the information context with less parameters along channel and spatial dimensions, respectively. The proposed MSA-Net is able to effectively infer the probability of correspondences being inliers with less parameters. Extensive experiments on outlier removal and relative pose estimation have shown the performance improvements of our network over current state-of-the-art methods with less parameters on both outdoor and indoor datasets. Notably, our proposed network achieves an 11.7% improvement at error threshold 5° without RANSAC than the state-of-the-art method on relative pose estimation task when trained on YFCC100M dataset 
650 4 |a Journal Article 
700 1 |a Xiao, Guobao  |e verfasserin  |4 aut 
700 1 |a Shi, Ziwei  |e verfasserin  |4 aut 
700 1 |a Wang, Shiping  |e verfasserin  |4 aut 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 4598-4608  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:4598-4608 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3186535  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 4598-4608