Convection Driven Ultrarapid Protein Detection via Nanobody-Functionalized Organic Electrochemical Transistors

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 35 vom: 27. Sept., Seite e2202972
1. Verfasser: Koklu, Anil (VerfasserIn)
Weitere Verfasser: Wustoni, Shofarul, Guo, Keying, Silva, Raphaela, Salvigni, Luca, Hama, Adel, Diaz-Galicia, Escarlet, Moser, Maximilian, Marks, Adam, McCulloch, Iain, Grünberg, Raik, Arold, Stefan T, Inal, Sahika
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article SARS-CoV-2 alternating current electrokinetics/electrohydrodynamics biosensors nanobodies organic electrochemical transistors Spike Glycoprotein, Coronavirus spike protein, SARS-CoV-2
LEADER 01000naa a22002652 4500
001 NLM342930052
003 DE-627
005 20231226015238.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202202972  |2 doi 
028 5 2 |a pubmed24n1143.xml 
035 |a (DE-627)NLM342930052 
035 |a (NLM)35772173 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Koklu, Anil  |e verfasserin  |4 aut 
245 1 0 |a Convection Driven Ultrarapid Protein Detection via Nanobody-Functionalized Organic Electrochemical Transistors 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.09.2022 
500 |a Date Revised 08.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Conventional biosensors rely on the diffusion-dominated transport of the target analyte to the sensor surface. Consequently, they require an incubation step that may take several hours to allow for the capture of analyte molecules by sensor biorecognition sites. This incubation step is a primary cause of long sample-to-result times. Here, alternating current electrothermal flow (ACET) is integrated in an organic electrochemical transistor (OECT)-based sensor to accelerate the device operation. ACET is applied to the gate electrode functionalized with nanobody-SpyCatcher fusion proteins. Using the SARS-CoV-2 spike protein in human saliva as an example target, it is shown that ACET enables protein recognition within only 2 min of sample exposure, supporting its use in clinical practice. The ACET integrated sensor exhibits better selectivity, higher sensitivity, and lower limit of detection than the equivalent sensor with diffusion-dominated operation. The performance of ACET integrated sensors is compared with two types of organic semiconductors in the channel and grounds for device-to-device variations are investigated. The results provide guidelines for the channel material choice in OECT-based biochemical sensors, and demonstrate that ACET integration substantially decreases the detection speed while increasing the sensitivity and selectivity of transistor-based sensors 
650 4 |a Journal Article 
650 4 |a SARS-CoV-2 
650 4 |a alternating current electrokinetics/electrohydrodynamics 
650 4 |a biosensors 
650 4 |a nanobodies 
650 4 |a organic electrochemical transistors 
650 7 |a Spike Glycoprotein, Coronavirus  |2 NLM 
650 7 |a spike protein, SARS-CoV-2  |2 NLM 
700 1 |a Wustoni, Shofarul  |e verfasserin  |4 aut 
700 1 |a Guo, Keying  |e verfasserin  |4 aut 
700 1 |a Silva, Raphaela  |e verfasserin  |4 aut 
700 1 |a Salvigni, Luca  |e verfasserin  |4 aut 
700 1 |a Hama, Adel  |e verfasserin  |4 aut 
700 1 |a Diaz-Galicia, Escarlet  |e verfasserin  |4 aut 
700 1 |a Moser, Maximilian  |e verfasserin  |4 aut 
700 1 |a Marks, Adam  |e verfasserin  |4 aut 
700 1 |a McCulloch, Iain  |e verfasserin  |4 aut 
700 1 |a Grünberg, Raik  |e verfasserin  |4 aut 
700 1 |a Arold, Stefan T  |e verfasserin  |4 aut 
700 1 |a Inal, Sahika  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 35 vom: 27. Sept., Seite e2202972  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:35  |g day:27  |g month:09  |g pages:e2202972 
856 4 0 |u http://dx.doi.org/10.1002/adma.202202972  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 35  |b 27  |c 09  |h e2202972