Efficient Low-Grade Heat Conversion and Storage with an Activity-Regulated Redox Flow Cell via a Thermally Regenerative Electrochemical Cycle

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 34 vom: 15. Aug., Seite e2202266
1. Verfasser: Zhang, Hang (VerfasserIn)
Weitere Verfasser: Lek, Dao Gen, Huang, Shiqiang, Lee, Yann Mei, Wang, Qing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article effective activity regulation energy storage low-grade heat harnessing redox flow batteries thermally regenerative electrochemical cycle
LEADER 01000naa a22002652 4500
001 NLM342882430
003 DE-627
005 20231226015132.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202202266  |2 doi 
028 5 2 |a pubmed24n1142.xml 
035 |a (DE-627)NLM342882430 
035 |a (NLM)35767369 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Hang  |e verfasserin  |4 aut 
245 1 0 |a Efficient Low-Grade Heat Conversion and Storage with an Activity-Regulated Redox Flow Cell via a Thermally Regenerative Electrochemical Cycle 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Efficient and cost-effective technologies are highly desired to convert the tremendous amount of low-grade waste heat to electricity. Although the thermally regenerative electrochemical cycle (TREC) has attracted increasing attention recently, the unsatisfactory thermal-to-electrical conversion efficiency and low power density limit its practical applications. In this work, a thermosensitive Nernstian-potential-driven strategy in the TREC system is demonstrated to boost its temperature coefficient, power density, and thermoelectric conversion efficiency by rationally regulating the activities of redox couples at different temperatures. With a Zn anode and [Fe(CN)6 ]4-/3- -guanidinium as the catholyte, the TREC flow cell presents an unprecedented average temperature coefficient of -3.28 mV K-1 , and achieves an absolute thermoelectric efficiency of 25.1% and apparent thermoelectric efficiency of 14.9% relative to the Carnot efficiency in the temperature range of 25-50 °C at 1 mA cm-2 . In addition, a thermoelectric power density of 1.98 mW m-2 K-2 is demonstrated, which is more than 7 times the highest power density of reported TREC systems. This activity regulation strategy can inspire research into high-efficiency and high-power TREC devices for practical low-grade heat harnessing 
650 4 |a Journal Article 
650 4 |a effective activity regulation 
650 4 |a energy storage 
650 4 |a low-grade heat harnessing 
650 4 |a redox flow batteries 
650 4 |a thermally regenerative electrochemical cycle 
700 1 |a Lek, Dao Gen  |e verfasserin  |4 aut 
700 1 |a Huang, Shiqiang  |e verfasserin  |4 aut 
700 1 |a Lee, Yann Mei  |e verfasserin  |4 aut 
700 1 |a Wang, Qing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 34 vom: 15. Aug., Seite e2202266  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:34  |g day:15  |g month:08  |g pages:e2202266 
856 4 0 |u http://dx.doi.org/10.1002/adma.202202266  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 34  |b 15  |c 08  |h e2202266