2D Metal-Organic Framework Cu3 (HHTT)2 Films for Broadband Photodetectors from Ultraviolet to Mid-Infrared
© 2022 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 32 vom: 01. Aug., Seite e2204140 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 2D metal-organic framework broadband photodetectors conduction mechanism flexible electronics optical synapses |
Zusammenfassung: | © 2022 Wiley-VCH GmbH. Cu3 (HHTT)2 (HHTT: 2,3,7,8,12,13-hexahydroxytetraazanaphthotetraphene) is a novel 2D conjugated metal-organic framework (2D c-MOF) with efficient in-plane d-π conjugations and strong interlayer π-π interactions while the growth of Cu3 (HHTT)2 thin films has never been reported until now. Here, the successful fabrication of highly oriented wafer-scale Cu3 (HHTT)2 thin films with a layer-by-layer growth method on various substrates is presented. Its semiconducting behavior and carrier transport mechanisms are clarified through temperature and frequency-dependent conductivity measurements. Flexible photodetectors based on Cu3 (HHTT)2 thin films exhibit reliable photoresponses at room temperature in a wavelength region from UV to mid-IR, which is much broader than those of solution-processed broadband photodetectors reported previously. Moreover, the photodetectors can show a typical synaptic behavior and excellent data recognition accuracy in artificial neural networks. This work opens a window for the exploration of high-performance and multifunctional optoelectronic devices based on 2D c-MOFs |
---|---|
Beschreibung: | Date Revised 10.08.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202204140 |