A Self-Regulated Electrostatic Shielding Layer toward Dendrite-Free Zn Batteries

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 37 vom: 29. Sept., Seite e2203104
1. Verfasser: Hu, Zhengqiang (VerfasserIn)
Weitere Verfasser: Zhang, Fengling, Zhao, Yi, Wang, Huirong, Huang, Yongxin, Wu, Feng, Chen, Renjie, Li, Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Zn batteries Zn deposition regulation hydrogen evolution suppression rare metal additives
LEADER 01000naa a22002652 4500
001 NLM34286064X
003 DE-627
005 20231226015104.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202203104  |2 doi 
028 5 2 |a pubmed24n1142.xml 
035 |a (DE-627)NLM34286064X 
035 |a (NLM)35765154 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Zhengqiang  |e verfasserin  |4 aut 
245 1 2 |a A Self-Regulated Electrostatic Shielding Layer toward Dendrite-Free Zn Batteries 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Although aqueous Zn batteries have become a more sustainable alternative to lithium-ion batteries owing to their intrinsic security, their practical applications are limited by dendrite formation and hydrogen reactions. The first application of a rare earth metal type addition to Zn batteries, cerium chloride (CeCl3 ), as an effective, low-cost, and green electrolyte additive that facilitates the formation of a dynamic electrostatic shielding layer around the Zn protuberance to induce uniform Zn deposition is presented. After introducing CeCl3 additives, the electrochemical characterizations, in situ optical microscopy observation, in situ differential electrochemical mass spectrometry, along with density functional theory calculations, and finite element method simulations reveal resisted Zn dendritic growth and enhanced electrolyte stability. As a result, the Zn-Zn cells using the CeCl3 additive exhibit a long cycling stability of 2600 h at 2 mA cm-2 , an impressive cumulative areal capacity of 3.6 Ah cm-2 at 40 mA cm-2 , and a high Coulombic efficiency of ≈99.7%. The fact that the Zn-LiFePO4 cells with proposed electrolyte retain capacity significantly better than the additive-free case is even more exciting 
650 4 |a Journal Article 
650 4 |a Zn batteries 
650 4 |a Zn deposition regulation 
650 4 |a hydrogen evolution suppression 
650 4 |a rare metal additives 
700 1 |a Zhang, Fengling  |e verfasserin  |4 aut 
700 1 |a Zhao, Yi  |e verfasserin  |4 aut 
700 1 |a Wang, Huirong  |e verfasserin  |4 aut 
700 1 |a Huang, Yongxin  |e verfasserin  |4 aut 
700 1 |a Wu, Feng  |e verfasserin  |4 aut 
700 1 |a Chen, Renjie  |e verfasserin  |4 aut 
700 1 |a Li, Li  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 37 vom: 29. Sept., Seite e2203104  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:37  |g day:29  |g month:09  |g pages:e2203104 
856 4 0 |u http://dx.doi.org/10.1002/adma.202203104  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 37  |b 29  |c 09  |h e2203104