Metabolome and transcriptome analyses of the flavonoid biosynthetic pathway for the efficient accumulation of anthocyanins and other flavonoids in a new duckweed variety (68-red)

Copyright © 2022 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 275(2022) vom: 15. Aug., Seite 153753
1. Verfasser: Liu, Yu (VerfasserIn)
Weitere Verfasser: Li, Chuantong, Yan, Ruiting, Yu, Ruikang, Ji, Meijing, Chen, Fei, Fan, Shusheng, Meng, Jie, Liu, Fumei, Zhou, Gongke, Tang, Xianfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Anthocyanin Luteolin glycoside Metabolome Spirodela polyrhiza Transcriptome Anthocyanins Flavonoids Glucosides Glycosides mehr... Proanthocyanidins Apigenin 7V515PI7F6 Luteolin KUX1ZNC9J2
LEADER 01000naa a22002652 4500
001 NLM342810014
003 DE-627
005 20231226014956.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2022.153753  |2 doi 
028 5 2 |a pubmed24n1142.xml 
035 |a (DE-627)NLM342810014 
035 |a (NLM)35760019 
035 |a (PII)S0176-1617(22)00139-0 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yu  |e verfasserin  |4 aut 
245 1 0 |a Metabolome and transcriptome analyses of the flavonoid biosynthetic pathway for the efficient accumulation of anthocyanins and other flavonoids in a new duckweed variety (68-red) 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.07.2022 
500 |a Date Revised 25.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2022 Elsevier GmbH. All rights reserved. 
520 |a Duckweed is a kind of aquatic plant with the characteristics of high nutritional value and medicinal benefits. However, most researches focused on the natural germplasms. The underlying metabolic pathway remains to be systematically elaborated in duckweed. In our laboratory, one reddish-purple mutant with high-flavonoids was screened from a mutant library of Spirodela polyrhiza 6068, named 68-red. The content of anthocyanins and proanthocyanidins in 68-red mutant increased by 563.47% and 231.19%, respectively, compared to wild type. It is interesting that cynaroside and orientin content were significantly increased, in contrast, apigetrin and vitexin were decreased in 68-red mutant. Considering this, metabolome and transcriptome were employed to explore the flavonoids biosynthetic pathway. Here, a total of 734 metabolites were identified in the wild type and 68-red mutant. Among which, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, pelargonidin-3-O-glucoside and pelargonidin-3-O-(6″-O-malonyl)glucoside were significantly accumulated, which were positively correlated with deep reddish-purple of 68-red mutant. In addition, proanthocyanidins (B1, B2, B3, B4, C1, C2), flavonoid and its glycosides (11 luteolin and its glycosides, 14 quercetin and its glycosides, 14 kaempferol and its glycosides, 2 apigenin glycosides) were significantly accumulated, 2 apigenin glycosides were down-regulated in 68-red mutant. The transcriptome data and qRT-PCR indicated that 16 enzyme genes in flavonoids biosynthetic pathway (PAL, C4H, CHSs, F3H, ANS, ANR, F3'Hs, DFRs, LAR, GT1, BZ1) were significantly up-regulated in 68-red mutant. Correlation analysis found that three copies of F3'H gene play important roles in the synthesis of anthocyanins, luteolin and apigenin glycosides. In conclusion, the 68-red mutant is a high quality germplasm resources for food and medical industry. Metabolome and transcriptome provide new insight for exploring the enzyme genes and functional metabolites in duckweed 
650 4 |a Journal Article 
650 4 |a Anthocyanin 
650 4 |a Luteolin glycoside 
650 4 |a Metabolome 
650 4 |a Spirodela polyrhiza 
650 4 |a Transcriptome 
650 7 |a Anthocyanins  |2 NLM 
650 7 |a Flavonoids  |2 NLM 
650 7 |a Glucosides  |2 NLM 
650 7 |a Glycosides  |2 NLM 
650 7 |a Proanthocyanidins  |2 NLM 
650 7 |a Apigenin  |2 NLM 
650 7 |a 7V515PI7F6  |2 NLM 
650 7 |a Luteolin  |2 NLM 
650 7 |a KUX1ZNC9J2  |2 NLM 
700 1 |a Li, Chuantong  |e verfasserin  |4 aut 
700 1 |a Yan, Ruiting  |e verfasserin  |4 aut 
700 1 |a Yu, Ruikang  |e verfasserin  |4 aut 
700 1 |a Ji, Meijing  |e verfasserin  |4 aut 
700 1 |a Chen, Fei  |e verfasserin  |4 aut 
700 1 |a Fan, Shusheng  |e verfasserin  |4 aut 
700 1 |a Meng, Jie  |e verfasserin  |4 aut 
700 1 |a Liu, Fumei  |e verfasserin  |4 aut 
700 1 |a Zhou, Gongke  |e verfasserin  |4 aut 
700 1 |a Tang, Xianfeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 275(2022) vom: 15. Aug., Seite 153753  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:275  |g year:2022  |g day:15  |g month:08  |g pages:153753 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2022.153753  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 275  |j 2022  |b 15  |c 08  |h 153753