Optical sensors and machine learning algorithms in sensor-based material flow characterization for mechanical recycling processes : A systematic literature review

Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.

Détails bibliographiques
Publié dans:Waste management (New York, N.Y.). - 1999. - 149(2022) vom: 15. Juli, Seite 259-290
Auteur principal: Kroell, Nils (Auteur)
Autres auteurs: Chen, Xiaozheng, Greiff, Kathrin, Feil, Alexander
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Waste management (New York, N.Y.)
Sujets:Journal Article Review Systematic Review Digitalization Machine learning Mechanical recycling Optical sensors Sensor-based material flow characterization Sensor-based sorting
LEADER 01000caa a22002652c 4500
001 NLM342809962
003 DE-627
005 20250303124144.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2022.05.015  |2 doi 
028 5 2 |a pubmed25n1142.xml 
035 |a (DE-627)NLM342809962 
035 |a (NLM)35760014 
035 |a (PII)S0956-053X(22)00262-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kroell, Nils  |e verfasserin  |4 aut 
245 1 0 |a Optical sensors and machine learning algorithms in sensor-based material flow characterization for mechanical recycling processes  |b A systematic literature review 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.08.2022 
500 |a Date Revised 09.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved. 
520 |a Digital technologies hold enormous potential for improving the performance of future-generation sorting and processing plants; however, this potential remains largely untapped. Improved sensor-based material flow characterization (SBMC) methods could enable new sensor applications such as adaptive plant control, improved sensor-based sorting (SBS), and more far-reaching data utilizations along the value chain. This review aims to expedite research on SBMC by (i) providing a comprehensive overview of existing SBMC publications, (ii) summarizing existing SBMC methods, and (iii) identifying future research potentials in SBMC. By conducting a systematic literature search covering the period 2000 - 2021, we identified 198 peer-reviewed journal articles on SBMC applications based on optical sensors and machine learning algorithms for dry-mechanical recycling of non-hazardous waste. The review shows that SBMC has received increasing attention in recent years, with more than half of the reviewed publications published between 2019 and 2021. While applications were initially focused solely on SBS, the last decade has seen a trend toward new applications, including sensor-based material flow monitoring, quality control, and process monitoring/control. However, SBMC at the material flow and process level remains largely unexplored, and significant potential exists in upscaling investigations from laboratory to plant scale. Future research will benefit from a broader application of deep learning methods, increased use of low-cost sensors and new sensor technologies, and the use of data streams from existing SBS equipment. These advancements could significantly improve the performance of future-generation sorting and processing plants, keep more materials in closed loops, and help paving the way towards circular economy 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Systematic Review 
650 4 |a Digitalization 
650 4 |a Machine learning 
650 4 |a Mechanical recycling 
650 4 |a Optical sensors 
650 4 |a Sensor-based material flow characterization 
650 4 |a Sensor-based sorting 
700 1 |a Chen, Xiaozheng  |e verfasserin  |4 aut 
700 1 |a Greiff, Kathrin  |e verfasserin  |4 aut 
700 1 |a Feil, Alexander  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 149(2022) vom: 15. Juli, Seite 259-290  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:149  |g year:2022  |g day:15  |g month:07  |g pages:259-290 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2022.05.015  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 149  |j 2022  |b 15  |c 07  |h 259-290