Data Acquisition and Preparation for Dual-Reference Deep Learning of Image Super-Resolution

The performance of deep learning based image super-resolution (SR) methods depend on how accurately the paired low and high resolution images for training characterize the sampling process of real cameras. Low and high resolution (LR  ∼  HR) image pairs synthesized by degradation models (e.g., bicub...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 27., Seite 4393-4404
1. Verfasser: Guo, Yanhui (VerfasserIn)
Weitere Verfasser: Wu, Xiaolin, Shu, Xiao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM342805800
003 DE-627
005 20231226014950.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3184819  |2 doi 
028 5 2 |a pubmed24n1142.xml 
035 |a (DE-627)NLM342805800 
035 |a (NLM)35759597 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Yanhui  |e verfasserin  |4 aut 
245 1 0 |a Data Acquisition and Preparation for Dual-Reference Deep Learning of Image Super-Resolution 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The performance of deep learning based image super-resolution (SR) methods depend on how accurately the paired low and high resolution images for training characterize the sampling process of real cameras. Low and high resolution (LR  ∼  HR) image pairs synthesized by degradation models (e.g., bicubic downsampling) deviate from those in reality; thus the synthetically-trained DCNN SR models work disappointingly when being applied to real-world images. To address this issue, we propose a novel data acquisition process to shoot a large set of LR  ∼  HR image pairs using real cameras. The images are displayed on an ultra-high quality screen and captured at different resolutions. The resulting LR  ∼  HR image pairs can be aligned at very high sub-pixel precision by a novel spatial-frequency dual-domain registration method, and hence they provide more appropriate training data for the learning task of super-resolution. Moreover, the captured HR image and the original digital image offer dual references to strengthen supervised learning. Experimental results show that training a super-resolution DCNN by our LR  ∼  HR dataset achieves higher image quality than training it by other datasets in the literature. Moreover, the proposed screen-capturing data collection process can be automated; it can be carried out for any target camera with ease and low cost, offering a practical way of tailoring the training of a DCNN SR model separately to each of the given cameras 
650 4 |a Journal Article 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
700 1 |a Shu, Xiao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 27., Seite 4393-4404  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:27  |g pages:4393-4404 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3184819  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 27  |h 4393-4404