Learning Transferable Parameters for Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) enables a learning machine to adapt from a labeled source domain to an unlabeled target domain under the distribution shift. Thanks to the strong representation ability of deep neural networks, recent remarkable achievements in UDA resort to learning domain-invar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 27., Seite 6424-6439
1. Verfasser: Han, Zhongyi (VerfasserIn)
Weitere Verfasser: Sun, Haoliang, Yin, Yilong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article