Learning Transferable Parameters for Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) enables a learning machine to adapt from a labeled source domain to an unlabeled target domain under the distribution shift. Thanks to the strong representation ability of deep neural networks, recent remarkable achievements in UDA resort to learning domain-invar...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 27., Seite 6424-6439
Auteur principal: Han, Zhongyi (Auteur)
Autres auteurs: Sun, Haoliang, Yin, Yilong
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article