Video Joint Modelling Based on Hierarchical Transformer for Co-Summarization

Video summarization aims to automatically generate a summary (storyboard or video skim) of a video, which can facilitate large-scale video retrieval and browsing. Most of the existing methods perform video summarization on individual videos, which neglects the correlations among similar videos. Such...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 27. März, Seite 3904-3917
1. Verfasser: Li, Haopeng (VerfasserIn)
Weitere Verfasser: Ke, Qiuhong, Gong, Mingming, Zhang, Rui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM342805770
003 DE-627
005 20250303124110.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3186506  |2 doi 
028 5 2 |a pubmed25n1142.xml 
035 |a (DE-627)NLM342805770 
035 |a (NLM)35759594 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Haopeng  |e verfasserin  |4 aut 
245 1 0 |a Video Joint Modelling Based on Hierarchical Transformer for Co-Summarization 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video summarization aims to automatically generate a summary (storyboard or video skim) of a video, which can facilitate large-scale video retrieval and browsing. Most of the existing methods perform video summarization on individual videos, which neglects the correlations among similar videos. Such correlations, however, are also informative for video understanding and video summarization. To address this limitation, we propose Video Joint Modelling based on Hierarchical Transformer (VJMHT) for co-summarization, which takes into consideration the semantic dependencies across videos. Specifically, VJMHT consists of two layers of Transformer: the first layer extracts semantic representation from individual shots of similar videos, while the second layer performs shot-level video joint modelling to aggregate cross-video semantic information. By this means, complete cross-video high-level patterns are explicitly modelled and learned for the summarization of individual videos. Moreover, Transformer-based video representation reconstruction is introduced to maximize the high-level similarity between the summary and the original video. Extensive experiments are conducted to verify the effectiveness of the proposed modules and the superiority of VJMHT in terms of F-measure and rank-based evaluation 
650 4 |a Journal Article 
700 1 |a Ke, Qiuhong  |e verfasserin  |4 aut 
700 1 |a Gong, Mingming  |e verfasserin  |4 aut 
700 1 |a Zhang, Rui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 27. März, Seite 3904-3917  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:27  |g month:03  |g pages:3904-3917 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3186506  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 27  |c 03  |h 3904-3917