|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM342785974 |
003 |
DE-627 |
005 |
20231226014924.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/02664763.2021.1890001
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1142.xml
|
035 |
|
|
|a (DE-627)NLM342785974
|
035 |
|
|
|a (NLM)35757588
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Vasconcelos, J C S
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A new heteroscedastic regression to analyze mass loss of wood in civil construction in Brazil
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 16.07.2022
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Informa UK Limited, trading as Taylor & Francis Group.
|
520 |
|
|
|a A heteroscedastic regression based on the odd log-logistic Marshall-Olkin normal (OLLMON) distribution is defined by extending previous models. Some structural properties of this distribution are presented. The estimation of the parameters is addressed by maximum likelihood. For different parameter settings, sample sizes and some scenarios, various simulations investigate the performance of the heteroscedastic OLLMON regression. We use residual analysis to detect influential observations and to check the model assumptions. The new regression explains the mass loss of different wood species in civil construction in Brazil
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Carbonization in building
|
650 |
|
4 |
|a Marshall–Olkin family
|
650 |
|
4 |
|a heteroscedastic regression
|
650 |
|
4 |
|a lignocellulosic mass loss
|
650 |
|
4 |
|a regression model
|
700 |
1 |
|
|a Ortega, E M M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vasconcelos, J S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cordeiro, G M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vivan, A L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Biaggioni, M A M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of applied statistics
|d 1991
|g 49(2022), 8 vom: 20., Seite 2035-2051
|w (DE-627)NLM098188178
|x 0266-4763
|7 nnns
|
773 |
1 |
8 |
|g volume:49
|g year:2022
|g number:8
|g day:20
|g pages:2035-2051
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/02664763.2021.1890001
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 49
|j 2022
|e 8
|b 20
|h 2035-2051
|