Machine learning and design of experiments with an application to product innovation in the chemical industry

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 10 vom: 07., Seite 2674-2699
1. Verfasser: Arboretti, Rosa (VerfasserIn)
Weitere Verfasser: Ceccato, Riccardo, Pegoraro, Luca, Salmaso, Luigi, Housmekerides, Chris, Spadoni, Luca, Pierangelo, Elisabetta, Quaggia, Sara, Tveit, Catherine, Vianello, Sebastiano
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Experimental design R&D artificial neural networks product development random forests
LEADER 01000naa a22002652 4500
001 NLM342780484
003 DE-627
005 20231226014916.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1907840  |2 doi 
028 5 2 |a pubmed24n1142.xml 
035 |a (DE-627)NLM342780484 
035 |a (NLM)35757041 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Arboretti, Rosa  |e verfasserin  |4 aut 
245 1 0 |a Machine learning and design of experiments with an application to product innovation in the chemical industry 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Industrial statistics plays a major role in the areas of both quality management and innovation. However, existing methodologies must be integrated with the latest tools from the field of Artificial Intelligence. To this end, a background on the joint application of Design of Experiments (DOE) and Machine Learning (ML) methodologies in industrial settings is presented here, along with a case study from the chemical industry. A DOE study is used to collect data, and two ML models are applied to predict responses which performance show an advantage over the traditional modeling approach. Emphasis is placed on causal investigation and quantification of prediction uncertainty, as these are crucial for an assessment of the goodness and robustness of the models developed. Within the scope of the case study, the models learned can be implemented in a semi-automatic system that can assist practitioners who are inexperienced in data analysis in the process of new product development 
650 4 |a Journal Article 
650 4 |a Experimental design 
650 4 |a R&D 
650 4 |a artificial neural networks 
650 4 |a product development 
650 4 |a random forests 
700 1 |a Ceccato, Riccardo  |e verfasserin  |4 aut 
700 1 |a Pegoraro, Luca  |e verfasserin  |4 aut 
700 1 |a Salmaso, Luigi  |e verfasserin  |4 aut 
700 1 |a Housmekerides, Chris  |e verfasserin  |4 aut 
700 1 |a Spadoni, Luca  |e verfasserin  |4 aut 
700 1 |a Pierangelo, Elisabetta  |e verfasserin  |4 aut 
700 1 |a Quaggia, Sara  |e verfasserin  |4 aut 
700 1 |a Tveit, Catherine  |e verfasserin  |4 aut 
700 1 |a Vianello, Sebastiano  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 10 vom: 07., Seite 2674-2699  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:10  |g day:07  |g pages:2674-2699 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1907840  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 10  |b 07  |h 2674-2699