Review of Bayesian selection methods for categorical predictors using JAGS

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 9 vom: 21., Seite 2370-2388
1. Verfasser: Jreich, Rana (VerfasserIn)
Weitere Verfasser: Hatte, Christine, Parent, Eric
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Review Bayesian selection methods JAGS categorical predictors fusion regression effects sparsity spike and slab priors
LEADER 01000caa a22002652 4500
001 NLM342760866
003 DE-627
005 20240830232309.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1902955  |2 doi 
028 5 2 |a pubmed24n1517.xml 
035 |a (DE-627)NLM342760866 
035 |a (NLM)35755084 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jreich, Rana  |e verfasserin  |4 aut 
245 1 0 |a Review of Bayesian selection methods for categorical predictors using JAGS 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.08.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The formulation of variable selection has been widely developed in the Bayesian literature by linking a random binary indicator to each variable. This Bayesian inference has the advantage of stochastically exploring the set of possible sub-models, whatever their dimension. Bayesian selection approaches, appropriate for categorical predictors, are generally beyond the scope of the standard Bayesian selection of regressors in the linear model since all levels of a categorical variable should be jointly handled in the selection procedure. For categorical covariates, new strategies have been developed to detect the effect of grouped covariates rather than the single effect of a quantitative regressor. In this paper, we review three Bayesian selection methods for categorical predictors: Bayesian Group Lasso with Spike and Slab priors, Bayesian Sparse Group Selection and Bayesian Effect Fusion using model-based clustering. The motivation behind this paper is to provide detailed information about the implementation of the three Bayesian selection methods mentioned above, appropriate for categorical predictors, using the JAGS software. Selection performance and sensitivity analysis of the hyperparameters tuning for prior specifications are assessed under various simulated scenarios. JAGS helps user implement these three Bayesian selection methods for more complex model structures such as hierarchical ones with latent layers 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Bayesian selection methods 
650 4 |a JAGS 
650 4 |a categorical predictors 
650 4 |a fusion regression effects 
650 4 |a sparsity 
650 4 |a spike and slab priors 
700 1 |a Hatte, Christine  |e verfasserin  |4 aut 
700 1 |a Parent, Eric  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 9 vom: 21., Seite 2370-2388  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:9  |g day:21  |g pages:2370-2388 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1902955  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 9  |b 21  |h 2370-2388