Explainable artificial intelligence approach in combating real-time surveillance of COVID19 pandemic from CT scan and X-ray images using ensemble model

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.

Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing. - 1998. - 78(2022), 17 vom: 22., Seite 19246-19271
1. Verfasser: Ullah, Farhan (VerfasserIn)
Weitere Verfasser: Moon, Jihoon, Naeem, Hamad, Jabbar, Sohail
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:The Journal of supercomputing
Schlagworte:Journal Article COVID19 Covid Severity Ensemble learning Explainable AI Features selection IoT
LEADER 01000caa a22002652 4500
001 NLM342755129
003 DE-627
005 20240905231931.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11227-022-04631-z  |2 doi 
028 5 2 |a pubmed24n1524.xml 
035 |a (DE-627)NLM342755129 
035 |a (NLM)35754515 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ullah, Farhan  |e verfasserin  |4 aut 
245 1 0 |a Explainable artificial intelligence approach in combating real-time surveillance of COVID19 pandemic from CT scan and X-ray images using ensemble model 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. 
520 |a Population size has made disease monitoring a major concern in the healthcare system, due to which auto-detection has become a top priority. Intelligent disease detection frameworks enable doctors to recognize illnesses, provide stable and accurate results, and lower mortality rates. An acute and severe disease known as Coronavirus (COVID19) has suddenly become a global health crisis. The fastest way to avoid the spreading of Covid19 is to implement an automated detection approach. In this study, an explainable COVID19 detection in CT scan and chest X-ray is established using a combination of deep learning and machine learning classification algorithms. A Convolutional Neural Network (CNN) collects deep features from collected images, and these features are then fed into a machine learning ensemble for COVID19 assessment. To identify COVID19 disease from images, an ensemble model is developed which includes, Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), Decision Tree (DT), Logistic Regression (LR), K-Nearest Neighbor (KNN), and Random Forest (RF). The overall performance of the proposed method is interpreted using Gradient-weighted Class Activation Mapping (Grad-CAM), and t-distributed Stochastic Neighbor Embedding (t-SNE). The proposed method is evaluated using two datasets containing 1,646 and 2,481 CT scan images gathered from COVID19 patients, respectively. Various performance comparisons with state-of-the-art approaches were also shown. The proposed approach beats existing models, with scores of 98.5% accuracy, 99% precision, and 99% recall, respectively. Further, the t-SNE and explainable Artificial Intelligence (AI) experiments are conducted to validate the proposed approach 
650 4 |a Journal Article 
650 4 |a COVID19 
650 4 |a Covid Severity 
650 4 |a Ensemble learning 
650 4 |a Explainable AI 
650 4 |a Features selection 
650 4 |a IoT 
700 1 |a Moon, Jihoon  |e verfasserin  |4 aut 
700 1 |a Naeem, Hamad  |e verfasserin  |4 aut 
700 1 |a Jabbar, Sohail  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Journal of supercomputing  |d 1998  |g 78(2022), 17 vom: 22., Seite 19246-19271  |w (DE-627)NLM098252410  |x 0920-8542  |7 nnns 
773 1 8 |g volume:78  |g year:2022  |g number:17  |g day:22  |g pages:19246-19271 
856 4 0 |u http://dx.doi.org/10.1007/s11227-022-04631-z  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 78  |j 2022  |e 17  |b 22  |h 19246-19271