Dense Pixel-Level Interpretation of Dynamic Scenes With Video Panoptic Segmentation
A holistic understanding of dynamic scenes is of fundamental importance in real-world computer vision problems such as autonomous driving, augmented reality and spatio-temporal reasoning. In this paper, we propose a new computer vision benchmark: Video Panoptic Segmentation (VPS). To study this impo...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 06., Seite 5383-5395 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | A holistic understanding of dynamic scenes is of fundamental importance in real-world computer vision problems such as autonomous driving, augmented reality and spatio-temporal reasoning. In this paper, we propose a new computer vision benchmark: Video Panoptic Segmentation (VPS). To study this important problem, we present two datasets, Cityscapes-VPS and VIPER together with a new evaluation metric, video panoptic quality (VPQ). We also propose VPSNet++, an advanced video panoptic segmentation network, which simultaneously performs classification, detection, segmentation, and tracking of all identities in videos. Specifically, VPSNet++ builds upon a top-down panoptic segmentation network by adding pixel-level feature fusion head and object-level association head. The former temporally augments the pixel features while the latter performs object tracking. Furthermore, we propose panoptic boundary learning as an auxiliary task, and instance discrimination learning which learns spatio-temporally clustered pixel embedding for individual thing or stuff regions, i.e., exactly the objective of the video panoptic segmentation problem. Our VPSNet++ significantly outperforms the default VPSNet, i.e., FuseTrack baseline, and achieves state-of-the-art results on both Cityscapes-VPS and VIPER datasets. The datasets, metric, and models are publicly available at https://github.com/mcahny/vps |
---|---|
Beschreibung: | Date Revised 18.08.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2022.3183440 |