Younger carbon dominates global soil carbon efflux
© 2022 John Wiley & Sons Ltd.
Veröffentlicht in: | Global change biology. - 1999. - 28(2022), 18 vom: 24. Sept., Seite 5587-5599 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Global change biology |
Schlagworte: | Journal Article carbon age carbon input carbon sequestration deep soil radiocarbon soil organic carbon transit time Organic Chemicals Soil mehr... |
Zusammenfassung: | © 2022 John Wiley & Sons Ltd. Soil carbon (C) is comprised of a continuum of organic compounds with distinct ages (i.e., the time a C atom has experienced in soil since the C atom entered soil). The contribution of different age groups to soil C efflux is critical for understanding soil C stability and persistence, but is poorly understood due to the complexity of soil C pool age structure and potential distinct turnover behaviors of age groups. Here, we build upon the quantification of soil C transit times to infer the age of C atoms in soil C efflux (aefflux ) from seven sequential soil layer depths down to 2 m at a global scale, and compare this age with radiocarbon-inferred ages of C retained in corresponding soil layers (asoil ). In the whole 0-2 m soil profile, the mean aefflux is 194 21 1021 (mean with 5%-95% quantiles) year and is just about one-eighth of asoil ( 1476 717 2547 year), demonstrating that younger C dominates soil C efflux. With increasing soil depth, both aefflux and asoil are increased, but their disparities are markedly narrowed. That is, the proportional contribution of relatively younger soil C to efflux is decreased in deeper layers, demonstrating that C inputs (new and young) stay longer in deeper layers. Across the globe, we find large spatial variability of the contribution of soil C age groups to C efflux. Especially, in deep soil layers of cold regions (e.g., boreal forests and tundra), aefflux may be older than asoil , suggesting that older C dominates C efflux only under a limited range of conditions. These results imply that most C inputs may not contribute to long-term soil C storage, particularly in upper layers that hold the majority of new C inputs |
---|---|
Beschreibung: | Date Completed 16.08.2022 Date Revised 26.09.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.16311 |