Tuning Organic Electrochemical Transistor Threshold Voltage using Chemically Doped Polymer Gates

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 33 vom: 04. Aug., Seite e2202359
1. Verfasser: Tan, Siew Ting Melissa (VerfasserIn)
Weitere Verfasser: Lee, Gijun, Denti, Ilaria, LeCroy, Garrett, Rozylowicz, Kalee, Marks, Adam, Griggs, Sophie, McCulloch, Iain, Giovannitti, Alexander, Salleo, Alberto
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article chemical doping gate electrodes organic electrochemical transistors threshold voltage work function
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Organic electrochemical transistors (OECTs) have shown promise as transducers and amplifiers of minute electronic potentials due to their large transconductances. Tuning the OECT threshold voltage is important to achieve low-powered devices with amplification properties within the desired operational voltage range. However, traditional design approaches have struggled to decouple channel and materials properties from threshold voltage, thereby compromising on several other OECT performance metrics, such as electrochemical stability, transconductance, and dynamic range. In this work, simple solution-processing methods are utilized to chemically dope polymer gate electrodes, thereby controlling their work function, which in turn tunes the operation voltage range of the OECTs without perturbing their channel properties. Chemical doping of initially air-sensitive polymer electrodes further improves their electrochemical stability in ambient conditions. Thus, OECTs that are simultaneously low-powered and electrochemically resistant to oxidative side reactions under ambient conditions are demonstrated. This approach shows that threshold voltage, which is once interwoven with other OECT properties, can in fact be an independent design parameter, expanding the design space of OECTs
Beschreibung:Date Revised 18.08.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202202359