Optimizing Two-Way Partial AUC With an End-to-End Framework

The Area Under the ROC Curve (AUC) is a crucial metric for machine learning, which evaluates the average performance over all possible True Positive Rates (TPRs) and False Positive Rates (FPRs). Based on the knowledge that a skillful classifier should simultaneously embrace a high TPR and a low FPR,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 22. Aug., Seite 10228-10246
1. Verfasser: Yang, Zhiyong (VerfasserIn)
Weitere Verfasser: Xu, Qianqian, Bao, Shilong, He, Yuan, Cao, Xiaochun, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article