|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM34251881X |
003 |
DE-627 |
005 |
20250303120503.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202202633
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1141.xml
|
035 |
|
|
|a (DE-627)NLM34251881X
|
035 |
|
|
|a (NLM)35730715
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Eshete, Yonas Assefa
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Atomic and Electronic Manipulation of Robust Ferroelectric Polymorphs
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 05.08.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Polymorphism allows the symmetry of the lattice and spatial charge distributions of atomically thin materials to be designed. While various polymorphs for superconducting, magnetic, and topological states have been extensively studied, polymorphic control is a challenge for robust ferroelectricity in atomically thin geometries. Here, the atomic and electric manipulation of ferroelectric polymorphs in Mo1- x Wx Te2 is reported. Atomic manipulation for polymorphic control via chemical pressure (substituting tungsten for molybdenum atoms) and charge density modulation can realize tunable polar lattice structures and robust ferroelectricity up to T = 400 K with a constant coercive field in an atomically thin material. Owing to the effective inversion symmetry breaking, the ferroelectric switching withstands a charge carrier density of up to 1.1 × 1013 cm-2 , developing an original diagram for ferroelectric switching in atomically thin materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D ferroelectricity
|
650 |
|
4 |
|a phase diagrams
|
650 |
|
4 |
|a phase transitions
|
650 |
|
4 |
|a polymorphism
|
650 |
|
4 |
|a screening
|
700 |
1 |
|
|a Kang, Kyungrok
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kang, Seunghun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Yejin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nguyen, Phuong Lien
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cho, Deok-Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Yunseok
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Jaekwang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cho, Suyeon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Heejun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 31 vom: 22. Aug., Seite e2202633
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:31
|g day:22
|g month:08
|g pages:e2202633
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202202633
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 31
|b 22
|c 08
|h e2202633
|