Complementary Data Augmentation for Cloth-Changing Person Re-Identification

This paper studies the challenging person re-identification (Re-ID) task under the cloth-changing scenario, where the same identity (ID) suffers from uncertain cloth changes. To learn cloth- and ID-invariant features, it is crucial to collect abundant training data with varying clothes, which is dif...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 4227-4239
1. Verfasser: Jia, Xuemei (VerfasserIn)
Weitere Verfasser: Zhong, Xian, Ye, Mang, Liu, Wenxuan, Huang, Wenxin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM342489879
003 DE-627
005 20231226014232.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3183469  |2 doi 
028 5 2 |a pubmed24n1141.xml 
035 |a (DE-627)NLM342489879 
035 |a (NLM)35727784 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Xuemei  |e verfasserin  |4 aut 
245 1 0 |a Complementary Data Augmentation for Cloth-Changing Person Re-Identification 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.07.2022 
500 |a Date Revised 01.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper studies the challenging person re-identification (Re-ID) task under the cloth-changing scenario, where the same identity (ID) suffers from uncertain cloth changes. To learn cloth- and ID-invariant features, it is crucial to collect abundant training data with varying clothes, which is difficult in practice. To alleviate the reliance on rich data collection, we reinforce the feature learning process by designing powerful complementary data augmentation strategies, including positive and negative data augmentation. Specifically, the positive augmentation fulfills the ID space by randomly patching the person images with different clothes, simulating rich appearance to enhance the robustness against clothes variations. For negative augmentation, its basic idea is to randomly generate out-of-distribution synthetic samples by combining various appearance and posture factors from real samples. The designed strategies seamlessly reinforce the feature learning without additional information introduction. Extensive experiments conducted on both cloth-changing and -unchanging tasks demonstrate the superiority of our proposed method, consistently improving the accuracy over various baselines 
650 4 |a Journal Article 
700 1 |a Zhong, Xian  |e verfasserin  |4 aut 
700 1 |a Ye, Mang  |e verfasserin  |4 aut 
700 1 |a Liu, Wenxuan  |e verfasserin  |4 aut 
700 1 |a Huang, Wenxin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 4227-4239  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:4227-4239 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3183469  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 4227-4239