IMU-Assisted Online Video Background Identification

Distinguishing between dynamic foreground objects and a mostly static background is a fundamental problem in many computer vision and computer graphics tasks. This paper presents a novel online video background identification method with the assistance of inertial measurement unit (IMU). Based on th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 4336-4351
1. Verfasser: Rong, Jian-Xiang (VerfasserIn)
Weitere Verfasser: Zhang, Lei, Huang, Hua, Zhang, Fang-Lue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM342489860
003 DE-627
005 20250303120124.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3183442  |2 doi 
028 5 2 |a pubmed25n1141.xml 
035 |a (DE-627)NLM342489860 
035 |a (NLM)35727783 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rong, Jian-Xiang  |e verfasserin  |4 aut 
245 1 0 |a IMU-Assisted Online Video Background Identification 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Distinguishing between dynamic foreground objects and a mostly static background is a fundamental problem in many computer vision and computer graphics tasks. This paper presents a novel online video background identification method with the assistance of inertial measurement unit (IMU). Based on the fact that the background motion of a video essentially reflects the 3D camera motion, we leverage IMU data to realize a robust camera motion estimation for identifying background feature points by only investigating a few historical frames. We observe that the displacement of the 2D projection of a scene point caused by camera rotation is depth-invariant, and the rotation estimation by using IMU data can be quite accurate. We thus propose to analyze 2D feature points by decomposing the 2D motion into two components: rotation projection and translation projection. In our method, after establishing the 3D camera rotations, we generate the depth-relevant 2D feature point movement induced by the camera 3D translation. Then, by examining the disparity between inter-frame offset and the projection of estimated 3D camera motion, we can identify the background feature points. In the experiments, our online method is able to run at 30FPS with only 1 frame latency and outperforms state-of-the-art background identification and other relevant methods. Our method directly leads to a better camera motion estimation, which is beneficial to many applications like online video stabilization, SLAM, image stitching, etc 
650 4 |a Journal Article 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
700 1 |a Huang, Hua  |e verfasserin  |4 aut 
700 1 |a Zhang, Fang-Lue  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 4336-4351  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:4336-4351 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3183442  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 4336-4351