|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM34246471X |
003 |
DE-627 |
005 |
20250303115811.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202200899
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1141.xml
|
035 |
|
|
|a (DE-627)NLM34246471X
|
035 |
|
|
|a (NLM)35725240
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Song, Youngsup
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Three-Tier Hierarchical Structures for Extreme Pool Boiling Heat Transfer Performance
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 10.08.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Boiling is an effective energy-transfer process with substantial utility in energy applications. Boiling performance is described mainly by the heat-transfer coefficient (HTC) and critical heat flux (CHF). Recent efforts for the simultaneous enhancement of HTC and CHF have been limited by an intrinsic trade-off between them-HTC enhancement requires high nucleation-site density, which can increase bubble coalescence resulting in limited CHF enhancement. In this work, this trade-off is overcome by designing three-tier hierarchical structures. The bubble coalescence is minimized to enhance the CHF by defining nucleation sites with microcavities interspersed within hemi-wicking structures. Meanwhile, the reduced nucleation-site density is compensated for by incorporating nanostructures that promote evaporation for HTC enhancement. The hierarchical structures demonstrate the simultaneous enhancement of HTC and CHF up to 389% and 138%, respectively, compared to a smooth surface. This extreme boiling performance can lead to significant energy savings in a variety of boiling applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a critical heat flux
|
650 |
|
4 |
|a heat-transfer coefficient
|
650 |
|
4 |
|a hierarchical structures
|
650 |
|
4 |
|a microstructures
|
650 |
|
4 |
|a nanostructures
|
650 |
|
4 |
|a phase-change heat transfer
|
700 |
1 |
|
|a Díaz-Marín, Carlos D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Lenan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cha, Hyeongyun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Yajing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Evelyn N
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 32 vom: 15. Aug., Seite e2200899
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:32
|g day:15
|g month:08
|g pages:e2200899
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202200899
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 32
|b 15
|c 08
|h e2200899
|