TN-ZSTAD : Transferable Network for Zero-Shot Temporal Activity Detection

An integral part of video analysis and surveillance is temporal activity detection, which means to simultaneously recognize and localize activities in long untrimmed videos. Currently, the most effective methods of temporal activity detection are based on deep learning, and they typically perform ve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 16. März, Seite 3848-3861
1. Verfasser: Zhang, Lingling (VerfasserIn)
Weitere Verfasser: Chang, Xiaojun, Liu, Jun, Luo, Minnan, Li, Zhihui, Yao, Lina, Hauptmann, Alex
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM342304801
003 DE-627
005 20231226013808.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3183586  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342304801 
035 |a (NLM)35709117 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Lingling  |e verfasserin  |4 aut 
245 1 0 |a TN-ZSTAD  |b Transferable Network for Zero-Shot Temporal Activity Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a An integral part of video analysis and surveillance is temporal activity detection, which means to simultaneously recognize and localize activities in long untrimmed videos. Currently, the most effective methods of temporal activity detection are based on deep learning, and they typically perform very well with large scale annotated videos for training. However, these methods are limited in real applications due to the unavailable videos about certain activity classes and the time-consuming data annotation. To solve this challenging problem, we propose a novel task setting called zero-shot temporal activity detection (ZSTAD), where activities that have never been seen in training still need to be detected. We design an end-to-end deep transferable network TN-ZSTAD as the architecture for this solution. On the one hand, this network utilizes an activity graph transformer to predict a set of activity instances that appear in the video, rather than produces many activity proposals in advance. On the other hand, this network captures the common semantics of seen and unseen activities from their corresponding label embeddings, and it is optimized with an innovative loss function that considers the classification property on seen activities and the transfer property on unseen activities together. Experiments on the THUMOS'14, Charades, and ActivityNet datasets show promising performance in terms of detecting unseen activities 
650 4 |a Journal Article 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
700 1 |a Luo, Minnan  |e verfasserin  |4 aut 
700 1 |a Li, Zhihui  |e verfasserin  |4 aut 
700 1 |a Yao, Lina  |e verfasserin  |4 aut 
700 1 |a Hauptmann, Alex  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 16. März, Seite 3848-3861  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:16  |g month:03  |g pages:3848-3861 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3183586  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 16  |c 03  |h 3848-3861