|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM342304720 |
003 |
DE-627 |
005 |
20231226013808.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2022.3181516
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1140.xml
|
035 |
|
|
|a (DE-627)NLM342304720
|
035 |
|
|
|a (NLM)35709109
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liao, Yue
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Progressive Language-Customized Visual Feature Learning for One-Stage Visual Grounding
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.07.2022
|
500 |
|
|
|a Date Revised 01.07.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Visual grounding is a task to localize an object described by a sentence in an image. Conventional visual grounding methods extract visual and linguistic features isolatedly and then perform cross-modal interaction in a post-fusion manner. We argue that this post-fusion mechanism does not fully utilize the information in two modalities. Instead, it is more desired to perform cross-modal interaction during the extraction process of the visual and linguistic feature. In this paper, we propose a language-customized visual feature learning mechanism where linguistic information guides the extraction of visual feature from the very beginning. We instantiate the mechanism as a one-stage framework named Progressive Language-customized Visual feature learning (PLV). Our proposed PLV consists of a Progressive Language-customized Visual Encoder (PLVE) and a grounding module. We customize the visual feature with linguistic guidance at each stage of the PLVE by Channel-wise Language-guided Interaction Modules (CLIM). Our proposed PLV outperforms conventional state-of-the-art methods with large margins across five visual grounding datasets without pre-training on object detection datasets, while achieving real-time speed. The source code is available in the supplementary material
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhang, Aixi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Zhiyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hui, Tianrui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Si
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 31(2022) vom: 16., Seite 4266-4277
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2022
|g day:16
|g pages:4266-4277
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2022.3181516
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2022
|b 16
|h 4266-4277
|