Progressive Language-Customized Visual Feature Learning for One-Stage Visual Grounding

Visual grounding is a task to localize an object described by a sentence in an image. Conventional visual grounding methods extract visual and linguistic features isolatedly and then perform cross-modal interaction in a post-fusion manner. We argue that this post-fusion mechanism does not fully util...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 16., Seite 4266-4277
1. Verfasser: Liao, Yue (VerfasserIn)
Weitere Verfasser: Zhang, Aixi, Chen, Zhiyuan, Hui, Tianrui, Liu, Si
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM342304720
003 DE-627
005 20231226013808.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3181516  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342304720 
035 |a (NLM)35709109 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liao, Yue  |e verfasserin  |4 aut 
245 1 0 |a Progressive Language-Customized Visual Feature Learning for One-Stage Visual Grounding 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.07.2022 
500 |a Date Revised 01.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Visual grounding is a task to localize an object described by a sentence in an image. Conventional visual grounding methods extract visual and linguistic features isolatedly and then perform cross-modal interaction in a post-fusion manner. We argue that this post-fusion mechanism does not fully utilize the information in two modalities. Instead, it is more desired to perform cross-modal interaction during the extraction process of the visual and linguistic feature. In this paper, we propose a language-customized visual feature learning mechanism where linguistic information guides the extraction of visual feature from the very beginning. We instantiate the mechanism as a one-stage framework named Progressive Language-customized Visual feature learning (PLV). Our proposed PLV consists of a Progressive Language-customized Visual Encoder (PLVE) and a grounding module. We customize the visual feature with linguistic guidance at each stage of the PLVE by Channel-wise Language-guided Interaction Modules (CLIM). Our proposed PLV outperforms conventional state-of-the-art methods with large margins across five visual grounding datasets without pre-training on object detection datasets, while achieving real-time speed. The source code is available in the supplementary material 
650 4 |a Journal Article 
700 1 |a Zhang, Aixi  |e verfasserin  |4 aut 
700 1 |a Chen, Zhiyuan  |e verfasserin  |4 aut 
700 1 |a Hui, Tianrui  |e verfasserin  |4 aut 
700 1 |a Liu, Si  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 16., Seite 4266-4277  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:16  |g pages:4266-4277 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3181516  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 16  |h 4266-4277