Bayesian analyses of an exponential-Poisson and related zero augmented type models

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 4 vom: 17., Seite 949-967
1. Verfasser: Scollnik, David P M (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62f15 62p12 Bayesian Markov chain Monte Carlo exponential-Poisson hurdle zero-inflated
LEADER 01000caa a22002652c 4500
001 NLM342292056
003 DE-627
005 20250303113613.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1846692  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342292056 
035 |a (NLM)35707817 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Scollnik, David P M  |e verfasserin  |4 aut 
245 1 0 |a Bayesian analyses of an exponential-Poisson and related zero augmented type models 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.06.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a We consider several alternatives to the continuous exponential-Poisson distribution in order to accommodate the occurrence of zeros. Three of these are modifications of the exponential-Poisson model. One of these remains a fully continuous model. The other models we consider are all semi-continuous models, each with a discrete point mass at zero and a continuous density on the positive values. All of the models are applied to two environmental data sets concerning precipitation, and their Bayesian analyses using MCMC are discussed. This discussion covers convergence of the MCMC simulations and model selection procedures and considerations 
650 4 |a Journal Article 
650 4 |a 62f15 
650 4 |a 62p12 
650 4 |a Bayesian 
650 4 |a Markov chain Monte Carlo 
650 4 |a exponential-Poisson 
650 4 |a hurdle 
650 4 |a zero-inflated 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 4 vom: 17., Seite 949-967  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:49  |g year:2022  |g number:4  |g day:17  |g pages:949-967 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1846692  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 4  |b 17  |h 949-967