A mixture model with Poisson and zero-truncated Poisson components to analyze road traffic accidents in Turkey

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 4 vom: 17., Seite 1003-1017
1. Verfasser: Ünlü, Hande Konşuk (VerfasserIn)
Weitere Verfasser: Young, Derek S, Yiğiter, Ayten, Hilal Özcebe, L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Count data EM algorithm finite mixture models identifiability zero-truncated Poisson
LEADER 01000naa a22002652 4500
001 NLM342292021
003 DE-627
005 20231226013750.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1843610  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342292021 
035 |a (NLM)35707813 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ünlü, Hande Konşuk  |e verfasserin  |4 aut 
245 1 2 |a A mixture model with Poisson and zero-truncated Poisson components to analyze road traffic accidents in Turkey 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The analysis of traffic accident data is crucial to address numerous concerns, such as understanding contributing factors in an accident's chain-of-events, identifying hotspots, and informing policy decisions about road safety management. The majority of statistical models employed for analyzing traffic accident data are logically count regression models (commonly Poisson regression) since a count - like the number of accidents - is used as the response. However, features of the observed data frequently do not make the Poisson distribution a tenable assumption. For example, observed data rarely demonstrate an equal mean and variance and often times possess excess zeros. Sometimes, data may have heterogeneous structure consisting of a mixture of populations, rather than a single population. In such data analyses, mixtures-of-Poisson-regression models can be used. In this study, the number of injuries resulting from casualties of traffic accidents registered by the General Directorate of Security (Turkey, 2005-2014) are modeled using a novel mixture distribution with two components: a Poisson and zero-truncated-Poisson distribution. Such a model differs from existing mixture models in literature where the components are either all Poisson distributions or all zero-truncated Poisson distributions. The proposed model is compared with the Poisson regression model via simulation and in the analysis of the traffic data 
650 4 |a Journal Article 
650 4 |a Count data 
650 4 |a EM algorithm 
650 4 |a finite mixture models 
650 4 |a identifiability 
650 4 |a zero-truncated Poisson 
700 1 |a Young, Derek S  |e verfasserin  |4 aut 
700 1 |a Yiğiter, Ayten  |e verfasserin  |4 aut 
700 1 |a Hilal Özcebe, L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 4 vom: 17., Seite 1003-1017  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:4  |g day:17  |g pages:1003-1017 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1843610  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 4  |b 17  |h 1003-1017