Variable selection in finite mixture of regression models using the skew-normal distribution

© 2019 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 47(2020), 16 vom: 17., Seite 2941-2960
Auteur principal: Yin, Junhui (Auteur)
Autres auteurs: Wu, Liucang, Dai, Lin
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Journal of applied statistics
Sujets:Journal Article 62F35 62H30 62J07 Hard LASSO SCAD Variable selection mixture regression models skew-normal distribution
Description
Résumé:© 2019 Informa UK Limited, trading as Taylor & Francis Group.
Variable selection in finite mixture of regression (FMR) models is frequently used in statistical modeling. The majority of applications of variable selection in FMR models use a normal distribution for regression error. Such assumptions are unsuitable for a set of data containing a group or groups of observations with asymmetric behavior. In this paper, we introduce a variable selection procedure for FMR models using the skew-normal distribution. With appropriate choice of the tuning parameters, we establish the theoretical properties of our procedure, including consistency in variable selection and the oracle property in estimation. To estimate the parameters of the model, a modified EM algorithm for numerical computations is developed. The methodology is illustrated through numerical experiments and a real data example
Description:Date Revised 16.07.2022
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2019.1709051