Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 2 vom: 01., Seite 234-246
1. Verfasser: Jiang, Yunlu (VerfasserIn)
Weitere Verfasser: Wang, Yan, Zhang, Jiantao, Xie, Baojian, Liao, Jibiao, Liao, Wenhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article LASSO Outlier detection penalized weighted least absolute deviation robust regression variable selection
LEADER 01000caa a22002652 4500
001 NLM342290762
003 DE-627
005 20240826232322.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1722079  |2 doi 
028 5 2 |a pubmed24n1513.xml 
035 |a (DE-627)NLM342290762 
035 |a (NLM)35707691 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Yunlu  |e verfasserin  |4 aut 
245 1 0 |a Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.08.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a This paper studies the outlier detection and robust variable selection problem in the linear regression model. The penalized weighted least absolute deviation (PWLAD) regression estimation method and the adaptive least absolute shrinkage and selection operator (LASSO) are combined to simultaneously achieve outlier detection, and robust variable selection. An iterative algorithm is proposed to solve the proposed optimization problem. Monte Carlo studies are evaluated the finite-sample performance of the proposed methods. The results indicate that the finite sample performance of the proposed methods performs better than that of the existing methods when there are leverage points or outliers in the response variable or explanatory variables. Finally, we apply the proposed methodology to analyze two real datasets 
650 4 |a Journal Article 
650 4 |a LASSO 
650 4 |a Outlier detection 
650 4 |a penalized weighted least absolute deviation 
650 4 |a robust regression 
650 4 |a variable selection 
700 1 |a Wang, Yan  |e verfasserin  |4 aut 
700 1 |a Zhang, Jiantao  |e verfasserin  |4 aut 
700 1 |a Xie, Baojian  |e verfasserin  |4 aut 
700 1 |a Liao, Jibiao  |e verfasserin  |4 aut 
700 1 |a Liao, Wenhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 2 vom: 01., Seite 234-246  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:48  |g year:2021  |g number:2  |g day:01  |g pages:234-246 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1722079  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 2  |b 01  |h 234-246